단방향 케블라/에폭시, 탄소-케블라/에폭시 복합재 튜브의 축방향 압괴 거동에 대한 연구

Study on the Axial Crushing Behaviors of UD Kevlar/Epoxy and Carbon-Kevlar/Epoxy Composite Tubes

  • 김형욱 (과학기술연합대학원대학교 가상공학과) ;
  • 김정석 (한국철도기술연구원 철도구조연구실) ;
  • 정현승 (한국철도기술연구원 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원 철도구조연구실) ;
  • 권태수 (한국철도기술연구원 정책전략연구실)
  • 투고 : 2010.04.06
  • 심사 : 2010.06.07
  • 발행 : 2010.06.26

초록

본 논문에서는 에너지 흡수부재로 사용될 수 있는 단방향 케블라/에폭시 및 단방향 탄소-케블라/에폭시 튜브의 압괴거동을 예측할 수 있는 해석모델을 확립하고 이를 시험을 통해 검증하였다. 해석모델은 상용 외연적 해석 프로그램인 LS-DYNA의 2D 쉘 요소와 Chang-Chang 파손기준식을 이용하였다. 또한, 해석에 적용된 소재의 기계적 물성치는 시험을 통해 얻었다. 해석모델은 원형 튜브에 대한 10mm/min의 준정적 압괴 시험 결과와 비교를 통해 검증하였다. 그 결과 케블라/에폭시 튜브의 하중-변위 곡선은 거의 일치했으며 무게당 흡수 에너지(SEA)도 6% 미만의 오차에서 잘 일치하였다. 하지만, 탄소-케블라/에폭시 튜브는 시험과 약간의 차이를 보이고 있다.

In this paper, a numerical model for a Kevlar/Epoxy and Carbon-Kevlar/Epoxy tube used as an energy absorbing component has been developed and then results have been verified through experiment. The 2D shell element and Chang-Chang failure criterion of LS-DYNA that is commercial explicit FE code was used. Mechanical material properties for the model were obtained by material testing in advance. The numerical results were compared with quasi-static test results under axial compressive loading at 10mm/min. From the results, in the case of the Kevlar/Epoxy tube, load-crushed displacement curves were very close to the experiments and SEA (specific energy absorption) shows a good agreement with experimental one within less than 6%. However, the Carbon-Kevlar/Epoxy tube shows some differences with the experimental results.

키워드

참고문헌

  1. Ministry of Land, Transport and Maritime Affairs (2007) Revision for The Guide of Safety Reference of Railway Train.
  2. C. Kindervater (2002) The Crashworthiness of Composite Aerospace Structures, Workshop, the Crashworthiness of Composite Transportation Structures, TRL, Crowthorne, 3rd October.
  3. M. Wacker and M. Hormann (2004) Simulation of the Crash Performance of Crash Boxes based on Advanced Thermoplastic Composite, 22nd CAD-FEM Users' Meeting 2004 International Congress on FEM Technology with ANSYS CFX & ICEM CFD Conference, International Congress Center Dresden, Germany.
  4. J.-S. Kim, H.-J. Yoon, and T.-S. Kwon (2010) Investigation of Cell Size Effects of Honeycomb Sandwich Composite Square Tubes Under Compressive Loadings, Journal of the Korean Society for Railway, 13(1), pp. 31-36.
  5. P.H. Thornton and P.J. Edwards (1982) Energy Absorption in Composite Tubes, Journal of Composite Materials, 16, pp. 521-544. https://doi.org/10.1177/002199838201600606
  6. G.L. Farley (1983) Energy Absorption of Composite Materials, Journal of Composite Materials, 17, pp. 267-279. https://doi.org/10.1177/002199838301700307
  7. G.L. Farley, R.K. Bird, and J.T. Modlin (1989) The Role of Fiber and Matrix in Crash Energy Absorption of Composite Materials, Journal of the American Helicopter Society, April, pp. 52-58.
  8. J.-S. Kim, H.-J. Yoon, H.-S. Lee, and K. H. Choi (2009) Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes, Journal of the Korean Society for Composite Materials, 22(6), pp. 32-38.
  9. D.P. Flanagan and T. Belytschko (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng, 17, pp. 679-706. https://doi.org/10.1002/nme.1620170504
  10. P.H. Thornton (1979) Energy Absorption in Composite Structures, Journal of Composite Materials, Vol. 13, July.
  11. H. Ei-Hage, P.K. Mallick, and N. Zamani (2004) Numerical modelling of quasi-static axial crush of square aluminum - composite hybrid tubes, International Journal of Crashworthiness, 9(6), pp. 653-664. https://doi.org/10.1533/ijcr.2004.0320
  12. Z. Hanshin (1980) Failure Criteria for Unidirectional Fiber Composites, Journal of Applied Mechanics, 47, pp. 329. https://doi.org/10.1115/1.3153664
  13. Livermore Software Technology Corporation (1997) LS-DYNA user's manual (nonlinear dynamic analysis of structures in three dimensions).