DOI QR코드

DOI QR Code

A Comprehensive Dosimetric Analysis of Inverse Planned Intensity Modulated Radiation Therapy and Multistatic Fields Technique for Left Breast Radiotherapy

좌측 유방 방사선치료를 위한 역치료계획의 세기변조방사선치료와 다중빔조사영역치료기법 사이의 포괄적 선량측정 분석

  • Moon, Sung-Kwon (Department of Radiation Oncology, Eulji University Hospital, Eulji University School of Medicine) ;
  • Youn, Seon-Min (Department of Radiation Oncology, Eulji University Hospital, Eulji University School of Medicine)
  • 문성권 (을지대학교 의과대학 을지대학병원 방사선종양학교실) ;
  • 윤선민 (을지대학교 의과대학 을지대학병원 방사선종양학교실)
  • Received : 2009.08.07
  • Accepted : 2009.12.18
  • Published : 2010.08.31

Abstract

Purpose: This aim of this study is to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and MSF in the radiotherapy of the left breast. Materials and Methods: We performed a comparative analysis of two radiotherapy modalities that can achieve improved dose homogeneity. First is the multistatic fields technique that simultaneously uses both major and minor irradiation fields. The other is IMRT, which employs 3 or 5 beams using a fixed multileaf collimator. We designed treatment plans for 16 early left breast cancer patients who had taken breast conservation surgery and radiotherapy, and analyzed them from a dosimetric standpoint. Results: For the mean values of $V_{95}$ and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving over 110% of the prescribed dose were not found in any of the three methods. A Tukey test performed on IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and heart than multistatic fields technique (MSF) in the low-dose area, but in the high-dose area, MSF showed a slight increase. Conclusion: In order to improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered an optimal alternative to IMRT for radiotherapy of early left breast cancer.

목 적: 좌측 유방의 방사선치료에 있어, 3 빔 또는 5 빔을 이용한 세기변조방사선치료(intensity modulated radiation therapy, IMRT)와 다중빔조사영역 치료기법(multistatic fields techniques, MSF) 사이의 선량학적 차이를 분석하고자 하였다. 대상 및 방법: 개선된 선량 균일성을 만들 수 있는 가능성을 지닌 두 종류의 방사선치료 기술을 서로 비교 분석하였다. 첫째, 다중빔조사영역치료로 주조사야와 소조사야를 동시에 사용하여 치료하였다. 둘째, 고정된 다엽 조준기를 사용하는 IMRT로, 3 빔 또는 5 빔을 이용하였다. 유방보존술 후 방사선치료를 받은 16명의 초기 좌측 유방암 환자들을 대상으로 방사선치료계획들을 세운 다음, 이들을 선량학적 측면에서 비교 분석하였다. 결 과: $V_{95}$와 선량균일지수의 평균값은, 이 세 치료 사이에 통계학적으로 유의한 차이가 없었다. 방사선처방선량의 110% 이상을 받는 극심한 열점은 세 치료 모두에서 관찰되지 않았다. 동측 폐와 심장의 피폭 선량측정인자들에 대한 Tukey 검정에서, 세기변조방사선치료가 다중빔조사영역치료에 비해 저선량 영역의 피폭 선량을 유의하게 증가시킨 반면, 오히려 고선량 영역에서는 다중빔조사영역치료가 방사선 피폭을 약간 증가시켰다. 결 론: 선량 균일성 개선을 위해, 통상적인 쐐기기법 대신, 세기변조방사선치료보다 쉽게 계획되고 실시 될 수 있는 다중빔조사영역치료의 적용은 초기 좌측 유방암의 방사선치료 기술로 적합하다고 생각한다.

Keywords

References

  1. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview fo the randomised trials. Lancet 1998;351:1451-1467 https://doi.org/10.1016/S0140-6736(97)11423-4
  2. Kutcher GJ, Smith AR, Fowble BL, et al. Treatment planning for primary breast cancer: a patterns of care study. Int J Radiat Oncol Biol Phys 1996;36:731-737 https://doi.org/10.1016/S0360-3016(96)00368-9
  3. Fisher B, Redmond C, Poisson R, et al. Eight-year results of a randomized clinical trial comparing total mastectomy and lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 1989;320:822-828 https://doi.org/10.1056/NEJM198903303201302
  4. Lingos TI, Recht A, Vicini F, et al. Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 1991;21:355-360 https://doi.org/10.1016/0360-3016(91)90782-Y
  5. Wallgren A. Late effects of radiotherapy in the treatment of breast cancer. Acta Oncol 1992;31:237-242 https://doi.org/10.3109/02841869209088909
  6. Buchholz TA, Gurgoze E, Bice WS, Prestidge BR. Dosimetric analysis of intact breast irradiation in off-axis planes. Int J Radiat Oncol Biol Phys 1997;39:261-267
  7. Gray JR, McCormick B, Cox L, Yahalom J. Primary breast irradiation in large-breasted or heavy women: analysis of cosmetic outcome. Int J Radiat Oncol Biol Phys 1991;21:347-354 https://doi.org/10.1016/0360-3016(91)90781-X
  8. Moody AM, Mayles WP, Bliss JM, et al. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol 1994;33:106-112 https://doi.org/10.1016/0167-8140(94)90063-9
  9. Taylor ME, Perez CA, Halverson KJ, et al. Factors influencing cosmetic results after conservation therapy for breast cancer. Int J Radiat Oncol Biol Phys 1995;31:753-764 https://doi.org/10.1016/0360-3016(94)00480-3
  10. Cheng CW, Das IJ, Stea B. The effect of the number of computed tomographic slices on dose distributions and evaluation of treatment planning systems for radiation therapy of intact breast. Int J Radiat Oncol Biol Phys 1994;30:183-195 https://doi.org/10.1016/0360-3016(94)90678-5
  11. Haybittle JL, Brinkley D, Houghton J, A'Hern RP, Baum M. Postoperative radiotherapy and late mortality: evidence from the Cancer Research Campaign trial for early breast cancer. BMJ 1989;298:1611-1614 https://doi.org/10.1136/bmj.298.6688.1611
  12. Host H, Brennhovd IO, Loeb M. Postoperative radiotherapy in breast cancer: long-term results from the Oslo study. Int J Radiat Oncol Biol Phys 1986;12:727-732 https://doi.org/10.1016/0360-3016(86)90029-5
  13. Paszat LF, Mackillop WJ, Groome PA, et al. Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries. J Clin Oncol 1998;16:2625-2631 https://doi.org/10.1200/JCO.1998.16.8.2625
  14. Fraass BA, Roberson PL, Lichter AS. Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys 1985;11:485-497 https://doi.org/10.1016/0360-3016(85)90179-8
  15. Solin LJ, Chu JC, Sontag MR, et al. Three-dimensional photon treatment planning of the intact breast. Int J Radiat Oncol Biol Phys 1991;21:193-203
  16. Evans PM, Hansen VN, Mayles WP, et al. Design of compensators for breast radiotherapy using electronic portal imaging. Radiother Oncol 1995;37:43-54 https://doi.org/10.1016/0167-8140(95)01617-P
  17. Hong L, Hunt M, Chui C, et al. Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys 1999;44:1155-1164 https://doi.org/10.1016/S0360-3016(99)00132-7
  18. Bortfeld TR, Kahler DL, Waldron TJ, Boyer AL. X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 1994;28:723-730 https://doi.org/10.1016/0360-3016(94)90200-3
  19. Kestin LL, Sharpe MB, Frazier RC, et al. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys 2000;48:1559-1568 https://doi.org/10.1016/S0360-3016(00)01396-1
  20. Vicini FA, Sharpe M, Kestin L, et al. Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2002;54:1336-1344 https://doi.org/10.1016/S0360-3016(02)03746-X
  21. de la Torre N, Figueroa CT, Martinez K, Riley S, Chapman J. A comparative study of surface dose and dose distribution for intact breast following irradiation with fieldin-field technique vs. the use of conventional wedges. Med Dosim 2004;29:109-114 https://doi.org/10.1016/j.meddos.2004.03.002
  22. Mihai A, Rakovitch E, Sixel K, et al. Inverse vs. forward breast IMRT planning. Med Dosim 2005;30:149-154 https://doi.org/10.1016/j.meddos.2005.03.004
  23. Chin LM, Cheng CW, Siddon RL, et al. Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments. Int J Radiat Oncol Biol Phys 1989;17:1327-1335 https://doi.org/10.1016/0360-3016(89)90545-2
  24. Fraass BA, Lichter AS, McShan DL, et al. The influence of lung density corrections on treatment planning for primary breast cancer. Int J Radiat Oncol Biol Phys 1988;14:179-190 https://doi.org/10.1016/0360-3016(88)90066-1
  25. Das IJ, Cheng CW, Fosmire H, Kase KR, Fitzgerald TJ. Tolerances in setup and dosimetric errors in the radiation treatment of breast cancer. Int J Radiat Oncol Biol Phys 1993;26:883-890 https://doi.org/10.1016/0360-3016(93)90505-P
  26. Lo YC, Yasuda G, Fitzgerald TJ, Urie MM. Intensity modulation for breast treatment using static multi-leaf collimators. Int J Radiat Oncol Biol Phys 2000;46:187-194 https://doi.org/10.1016/S0360-3016(99)00382-X
  27. Voss S, George S. Multiple significance tests. BMJ 1995;310:1073
  28. Altman DG. Practical statistics for medical research. London: Chapman and Hall, 1990:210-211
  29. Beckham WA, Popescu CC, Patenaude VV, Wai ES, Olivotto IA. Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys 2007;69:918-924 https://doi.org/10.1016/j.ijrobp.2007.06.060
  30. Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys 2003;56:1354-1360 https://doi.org/10.1016/S0360-3016(03)00325-0
  31. Mundt AJ, Lujan AE, Rotmensch J, et al. Intensitymodulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2002;52:1330-1337 https://doi.org/10.1016/S0360-3016(01)02785-7
  32. Roeske JC, Lujan A, Rotmensch J, et al. Intensitymodulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2000;48:1613-1621 https://doi.org/10.1016/S0360-3016(00)00771-9
  33. Roeske JC, Bonta D, Mell LK, Lujan AE, Mundt AJ. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy. Radiother Oncol 2003;69:201-207 https://doi.org/10.1016/j.radonc.2003.05.001
  34. Evans PM, Donovan EM, Fenton N, et al. Practical implementation of compensators in breast radiotherapy. Radiother Oncol 1998;49:255-265 https://doi.org/10.1016/S0167-8140(98)00126-1
  35. Mageras GS, Mohan R, Burman C, Barest GD, Kutcher GJ. Compensators for three-dimensional treatment planning. Med Phys 1991;18:133-140 https://doi.org/10.1118/1.596699
  36. Asbury L, Luttrell L, Lake D. Achieving uniform dose with the use of a custom tissue compensator and a leveled beam for tangential breast fields. Med Dosim 1989;14:161-171 https://doi.org/10.1016/0958-3947(89)90203-3
  37. Valdagni R, Ciocca M, Busana L, Modugno A, Italia C. Beam modifying devices in the treatment of early breast cancer: 3-D stepped compensating technique. Radiother Oncol 1992;23:192-195 https://doi.org/10.1016/0167-8140(92)90330-W
  38. Hansen VN, Evans PM, Shentall GS, et al. Dosimetric evaluation of compensation in radiotherapy of the breast: MLC intensity modulation and physical compensators. Radiother Oncol 1997;42:249-256 https://doi.org/10.1016/S0167-8140(96)01895-6
  39. McDonald MW, Godette KD, Butker EK, Davis LW, Johnstone PA. Long-term outcomes of IMRT for breast cancer: a single-institution cohort analysis. Int J Radiat Oncol Biol Phys 2008;72:1031-1040 https://doi.org/10.1016/j.ijrobp.2008.02.053
  40. Lohr F, Heggemann F, Papavassiliu T, et al. Is cardiotoxicity still an issue after breast-conserving surgery and could it be reduced by multifield IMRT? Strahlenther Onkol 2009;185:222-230 https://doi.org/10.1007/s00066-009-1892-0
  41. Harsolia A, Kestin L, Grills I, et al. Intensity-modulated radiotherapy results in significant decrease in clinical toxicities compared with conventional wedge-based breast radiotherapy. Int J Radiat Oncol Biol Phys 2007;68:1375-1380 https://doi.org/10.1016/j.ijrobp.2007.02.044