DOI QR코드

DOI QR Code

All DSP 기반의 비편광 FOG 설계 및 제작

Design and Implementation of Depolarized FOG based on Digital Signal Processing

  • 투고 : 2010.03.09
  • 심사 : 2010.03.30
  • 발행 : 2010.08.31

초록

간섭형 Fiber optic gyroscope(FOG)는 Sagnac 효과를 이용한 회전센서로 알려져 있으며, 성능 개선을 위한 연구가 수행되어 왔다. 본 논문은 개루프 방식의 FOG 개발과 FPGA를 이용한 디지털 신호처리 기술을 다루고 있다. 첫 번째 목표는 양호한 bias stability(0.22deg/h), Scale factor stability, 단일모드 광섬유를 이용한 낮은 Angle randomwalk(0.07deg/$\sqrt[]{h}$)와 저가의 중급 자이로(Pointing grade)의 설계를 목표로 하고 있다. 두 번째 목표는 광검출기의 출력신호를 고속 ADC로 직접 변환 후 디지털 신호처리를 하는 FOG용 FPGA 개발이다. 본 연구에서 사용한 Cascaded integrator-comb(CIC)타입의 데시메이션 필터는 Adder와 Shift register만으로 구성되어 적은 계산량을 요구하므로 모든 디지털 FOG 프로세서를 저가의 프로세서로도 사용이 가능하다.

The interferometric fiber optic gyroscopes (FOGs) are well known as sensors of rotation, which are based on Sagnac effect, and have been under development for a number of years to meet a wide range of performance requirements. This paper describes the development of open-loop FOG and digital signal processing techniques implemented on FPGA. Our primary goal was to obtain intermediate accuracy (pointing grade) with a good bias stability (0.22deg) and scale factor stability, extremely low angle random walk (0.07deg) and significant cost savings by using a single mode fiber. A secondary goal is to design all digital FOG signal processing algorithms with which the SNR at the digital demodulator output is enhanced substantially due to processing gain. The Cascaded integrator bomb(CIC) type of decimation filter only requires adders and shift registers, low cost processors which has low computing power still can used in this all digital FOG processor.

키워드

참고문헌

  1. V. Vali and R. W. Shorthill, "Fiber Ring Interferometer", Appl. Opt. 15, 1099, 1976. https://doi.org/10.1364/AO.15.001099
  2. W.K. Burns and R. P. Moeller, "Polarizer requirements for fiber gyroscope with high-birefringence fiber and broad-band source", J. Lightwave Technol., vol. LT-2, no. 4, pp.430-435, 1984.
  3. Aritaka Ohno, Ryuji Usui, Kazuo Suzuki, Kenchi Okada, Kazuhiro Sakuma, "Intermediate and moderate grade Fiber Optic Gyroscope for industrial applications", SPIE Vol. 2292, 166, 1994.
  4. Bogdan Szafraniec, Member, IEEE, Member, OSA, and Glen A. Sanders "Theory of Polarization Evolution in Interferometric Fiber-Optic Depolarized Gyros", Journal of Lightwave Technology, Vol. 17, No. 4, April 1999.
  5. "The Digital Lock-in Amplifier", AMETEK, V3.1.
  6. Adrian A. Dorrington, et al., "A simple microcontroller based digital lock-in amplifier for the detection of low level optical signals", in IEEE International Workshop on Electronic Design, Test and Applications, 2002.
  7. Kalpana Arvind, et al., "Fiber Optic Gyroscope", Department of Space, Laboratory for Electro-Optics Systems-ISRO, 1stCross, 1stPhase, Peenya, Bangalore, INDIA-560058.
  8. Ryuji Usui, et al., "Intermediate Grade FOG with Single Mode Fiber Coil", SPIE Vol. 2070, 152, 1993.
  9. Brian Culshaw, Alan Rogers, and Henry Taylor, "The fiber-optic gyroscope", Artech House, 1993.
  10. Dr. Walter Stockwell, "Bias Stability Measurement: Allan Variance", Crossbow Technology, Inc., http://www.xbow.com