DOI QR코드

DOI QR Code

Research on Performance Improvement of the Adaptive Active Noise Control System Using the Recurrent Neural Network

순환형 신경망을 이용한 적응형 능동소음제어시스템의 성능 향상에 대한 연구

  • Received : 2010.06.17
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

The performance of noise attenuation of the adaptive active noise control algorithm is improved using the recurrent neural network. The FXLMS that has been frequently used in the active noise control is simple and has low computational load, but this method is weak to nonlinearity of the main or secondary path since it is based on the FIR linear filter method. In this paper, the recurrent neural network filter has been developed and applied to improvement of the active noise attenuation by simulation.

순환형 신경망을 이용한 적응형 능동소음 제어시스템의 소음저감 성능을 개선한다. 능동소음제어에 가장 많이 사용되고 있는 FXLMS는 단순하고 계산 부담이 적지만 FIR 선형필터에 기반을 둔 필터링 방법이어서 주 경로 또는 2차 경로의 비선형특성에 취약한 단점이 있다. 본 연구에서는 이러한 비선형 특성과 불확실성에 대해 강인한 특성을 갖는 순환형 신경망 필터링 기법을 개발하여 능동소음 제어시스템의 소음 저감 성능을 개선함을 시뮬레이션을 통해 보인다.

Keywords

References

  1. S.J.Elliot and P.A.Nelson, "Active Noise Control," IEEE Sign. Process Mag., vol. 10, pp. 12-35, 1993. https://doi.org/10.1109/79.248551
  2. S.M. Kuo and D.R.Morgan, "Active Noise Control: a Tutorial Review," IEEE Proc. 87, pp. 973-993, 1999.
  3. X.J.Qiu and C.H.Hansen, "A Modified Filtered-x LMS Algorithm for Active Control of Periodic Noise with On-line Cancellation Path Modeling," J. of Low Frequency Noise, Vib. and Active Contr., vol. 19, pp. 35-46, 2000. https://doi.org/10.1260/0263092001492787
  4. M.Zhang, J.Lan and W.Ser, "A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation," IEEE Trans. on Speech and Audio Proc., vol. 11, no. 1, pp. 45-53, 2003. https://doi.org/10.1109/TSA.2003.805643
  5. Y,Maeda and T.Yoshida, "An Active Noise Control without Estimation of Secondary Path-ANC Using Simultaneous Perturbation," Active 1999, Florida, USA, pp. 985-994, 1999.
  6. J.M.Souza, C.A.Silva and J.M.G.Sa da Costa, " Fuzzy Active Noise Modeling and Control," Inter. J. of Approximate Reason., vol. 33, pp. 51-70, 2003. https://doi.org/10.1016/S0888-613X(02)00147-0
  7. Z. Qizhi and J.Yongle, "Active Noise Hybrid Feedforward/Feedback Control Using Neural Network Compensation," Trans. ASME, vol. 124, January, pp. 100-104, 2002.
  8. Q.Z.Zhang, W.S.Gan and Y.L.Zhou, "Adaptive Recurrent Fuzzy Neural Networks for Active Noise Control," J. Sound and Vib., vol. 296, pp. 935-948, 2006. https://doi.org/10.1016/j.jsv.2006.03.020
  9. C.C.Ku and K.Y.Lee, "Diagonal Recurrent Neural Networks for Dynamic Systems Control," IEEE Trans. on Neural Networks, vol. 6, No. 1, pp. 144-156, 1995. https://doi.org/10.1109/72.363441
  10. P. Campolucci, P. Uncini, F. Piazza and B.D.Rao, "On-line Learning Algorithm for Locally Recurrent Neural Networks," IEEE Trans. on Neural Networks, vol. 10, no. 2, pp. 340-355, 1999. https://doi.org/10.1109/72.750564
  11. C.Y.Chang and F.B.Luoh, "Enhancement of Active Noise Control Using Neural-based Filtered-X algorithm," J. Sound and Vib., vol. 305, pp. 348-356, 2007. https://doi.org/10.1016/j.jsv.2007.04.007

Cited by

  1. 다중채널 능동소음제어기법을 이용한 KTX 실내소음의 구간별 저감성능 비교 vol.61, pp.1, 2012, https://doi.org/10.5370/kiee.2012.61.1.179
  2. 능동소음제어를 이용한 고속철도 KTX의 내소음 저감을 위한 모델링에 관한 연구 vol.61, pp.11, 2010, https://doi.org/10.5370/kiee.2012.61.11.1725