복합레진 적층계면에서 oxygen inhibition의 영향에 관한 연구

THE EFFECT OF OXYGEN INHIBITION ON INTERFACIAL BONDING BETWEEN COMPOSITE RESIN LAYERS

  • 최수미 (경희대학교 치과대학 소아치과학교실) ;
  • 박재홍 (경희대학교 치과대학 소아치과학교실) ;
  • 최성철 (경희대학교 치과대학 소아치과학교실) ;
  • 김광철 (경희대학교 치과대학 소아치과학교실) ;
  • 최영철 (경희대학교 치과대학 소아치과학교실)
  • Choi, Su-Mi (Department of Pediatric Dentistry, School of Dentistry, Kyung-Hee University) ;
  • Park, Jae-Hong (Department of Pediatric Dentistry, School of Dentistry, Kyung-Hee University) ;
  • Choi, Sung-Chul (Department of Pediatric Dentistry, School of Dentistry, Kyung-Hee University) ;
  • Kim, Kwang-Chul (Department of Pediatric Dentistry, School of Dentistry, Kyung-Hee University) ;
  • Choi, Young-Chul (Department of Pediatric Dentistry, School of Dentistry, Kyung-Hee University)
  • 투고 : 2010.05.14
  • 심사 : 2010.08.13
  • 발행 : 2010.08.31

초록

복합레진의 적층계면에서 산소억제층(oxygen inhibition layer:이하 OIL)의 영향을 연구하기 위해, 아크릴릭 몰드(하층) 에 복합레진의 shade A3를 충전한 후 표면의 조건을 달리하여 중합하였으며 상층은 shade A1으로 충전하고 중합하였다. 대조군(OIL 존재), 1군(OIL 형성억제), 2군(OIL 형성억제+레진표면의 미반응 모노머 제거), 3군(가압하에 중합), 4군(열중합), 5군(시효처리), 6군(시효처리+본딩제 도포)로 하층의 계면조건을 다르게 하였다. 전단결합강도와 파절양상, 전환률을 분석하여 다음의 결과를 얻었다. 1. 전단결합강도 측정 결과 대조군과 제 1군 사이에 통계학적으로 유의한 차이가 없었다(p>0.05). 2. 제 2군은 대조군과 1군에 비해 낮은 결합강도를 보였다(p<0.05). 3. 제 3군은 가장 높은 결합강도를 보인 반면, 4군은 가장 낮은 결합강도를 보였다. 4. 6군은 5군보다 두 배 정도 높은 결합강도를 보였다. 5. 대조군과 1군 및 3군에서는 주로 응집성 복합레진파절이 일어난 반면 2군, 4군, 5군과 6군에서는 주로 접착성 계면파절이 일어났다. 6. FTIR로 전환률을 측정한 결과 2군에서는 50.55%로 가장 높았고, 대조군에서는 가장 낮았다(p<0.05). 전단결합강도와 전환률의 결과로 보아, OIL은 복합레진 계면의 결합에 필수적인 요인은 아니며, 표층의 미반응 모노머가 결합강도에 영향을 미치는 것으로 보인다. 향후 계면 결합강도에 영향을 미칠 수 있는 미반응 모노머의 정량적인 분석을 통한 추가적인 연구가 필요할 것으로 생각된다.

The purpose of this study was to assess the effect on oxygen inhibition layer(OIL) for the interfacial bonding between resin composite layers, including shear bond strength, fracture modes and degree of conversion. The first layer of specimen was filled with Z-250(shade A3) and was cured for 40s. The second layer of specimen was filled with same composite(shade A1) and was cured for 40s. The first layer of specimens for each group were prepared by methods as followings. Control(curing in atmospheric air), Group1(curing against Mylar strip), Group2(scrubbed with a acetone-soaked cotton), Group3(using Tescera light cup), Group4(using Tescera heat cup), Group5(stored in disti1led water for 30days at $37^{\circ}C$), Group6 (using bonding agent). The results were as follows: 1. There was no statistically significant different shear bond strength between control and group 1(p>0.05). 2. Group 2 showed significantly lower shear bond strength than control and group 1(p<0.05). 3. The observation of the fracture surface leads to the evidence that a major difference occurs in the case of control, group1 and group 3 samples which break mainly cohesively while the other groups break in majority adhesively. 4. The results of FTIR showed that the degree of conversion was the highest in group 2 and the lowest in control group(p<0.05). It can be concluded that an OIL is not necessary for bonding with composite resin. But if a reduced critical amount of the unreacted monomer is present, it was detrimental to bonding additional layers of composite. Further study, such as the quantitative analysis of the unreacted monomer are required.

키워드

참고문헌

  1. 김선영, 조병훈, 백승호 등 : Layering시 복합레진 층간의 계면 결합에서 oxygen inhibition layer가 필수적인가? 대한치과보존학회지, 33:405-412, 2008. https://doi.org/10.5395/JKACD.2008.33.4.405
  2. Suh BI : Oxygen-inhibited layer in adhesion dentistry. J Esthet Restor Dent, 16:316-323, 2004. https://doi.org/10.1111/j.1708-8240.2004.tb00060.x
  3. Mount GI, Hume WR : 치질의 보존과 치아수복. 나래출판사, chapter 9:95-96, 2000.
  4. Andrzejewska E, Linden LA, Rabek JF : The role of oxygen camphorquinone-initiated photopolymerization. Macromol Chem Phys, 199:441-449, 1998. https://doi.org/10.1002/(SICI)1521-3935(19980301)199:3<441::AID-MACP441>3.0.CO;2-N
  5. Dall'Oca S, Papacchini F, Goracci C, et al. : Effect of oxygen inhibition on composite repair strength over time. J Biomed Mater Res, 81B:493-498, 2007. https://doi.org/10.1002/jbm.b.30689
  6. Gauthier MA, Stangel I, Ellis TH, et al. : Oxygen inhibition in dental resins. J Dent Res, 84:725-729, 2005. https://doi.org/10.1177/154405910508400808
  7. Andrzejewska E. : Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci, 26:605- 665, 2001. https://doi.org/10.1016/S0079-6700(01)00004-1
  8. Xia WZ, Cook WD : Exotherm control in the thermal polymerization of nona-ethylene glycol dimethacrylate (NEGDM) using a dual radical initiator system. Polymer, 44:79-88, 2003. https://doi.org/10.1016/S0032-3861(02)00766-8
  9. Ruyter IE : Unpolymerized surface layers on sealants. Acta Odontol Scan, 39:27-32, 1981. https://doi.org/10.3109/00016358109162255
  10. Finger WJ, Lee KS, Podszun W : Monomers with low oxygen inhibition as enamel/dentin adhesives. Dent Mater, 12:256-261, 1996. https://doi.org/10.1016/S0109-5641(96)80032-7
  11. Lee TY, Guymon CA, Sonny Jonsson E, et al. : The effect of monomer structure on oxygen inhibition of (meth)acrylates photopolymerization. Polymer, 45:6155-6162, 2004.
  12. Shawkat ES, Shortall AC, Addison O, Palin WM : Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater, 25:1338- 1346, 2009. https://doi.org/10.1016/j.dental.2009.06.003
  13. Nunes TG, Ceballos L, Osorio R, et al. : Spatially resolved photopolymerization kinetics and oxygen inhibition in dental adhesives. Biomaterials, 26:1809-1817, 2005. https://doi.org/10.1016/j.biomaterials.2004.06.012
  14. Manabe A, Kanehira M, Finger WJ. et al. : Effects of opacity and oxygen inhibition of coating resin composites on bond strength to enamel. Dental Materials, 28:552-557, 2009. https://doi.org/10.4012/dmj.28.552
  15. Truffier-Boutry D, Place E, Devaux J, et al. : Interfacial layer characterization in dental composite. J Oral Rehabil, 30:74-77, 2003. https://doi.org/10.1046/j.1365-2842.2003.01008.x
  16. Rueggeberg FA, Margeson DH : The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res, 69:1652-1658, 1990. https://doi.org/10.1177/00220345900690100501
  17. Eliades GC, Caputo AA : The strength of layering technique in visible light-cured composites. J Prosthet Dent, 61:31-38, 1989. https://doi.org/10.1016/0022-3913(89)90104-2
  18. Kupiec KA, Barkmeier WW: Laboratory evaluation of surface treatments for composite repair. Oper Dent, 21:59-62, 1996.
  19. 김경현, 권오승, 김현기 등 : 수종 광중합 복합레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구. 대한치과보존학회지, 22:35-60, 1997.
  20. 김상배, 박호원 : 광원에 따른 조사거리의 증가가 복합레진의 중합도에 미치는 영향. 대한소아치과학회지, 31:273-279, 2004.
  21. Bala O, Olmez A, Kalayci S : Effect of LED and halogen light curing on polymerization of resin-based composites. J Oral Rehabil, 32:134-140, 2005. https://doi.org/10.1111/j.1365-2842.2004.01399.x
  22. Stansbury JW, Dickens SH : Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater, 17:71-79, 2001. https://doi.org/10.1016/S0109-5641(00)00062-2
  23. Velazquez E, Vaidyanathan J, Vaidyanathan TK, et al. : Effect of primer solvent and curing mode on dentin shear bond strength and interface morphology. Quint Int, 34:548-555, 2003.
  24. Li J : Effects of surface properties on bond strength between layers of newly cured dental composites. J Oral Rehabil, 24:358-360, 1997. https://doi.org/10.1046/j.1365-2842.1997.00508.x
  25. Tezvergil-Mutluay A, Lassila LVJ, Vallittu PK. : Incremental layers bonding of silorane composite: the initial bonding properties. Journal of Dentistry, 36:560-563, 2008. https://doi.org/10.1016/j.jdent.2008.03.008
  26. Puckett AD, Holder R, O' Hara JW : Strength of posterior composite repairs using different composite/ bonding agent combinations. Oper Dent, 16:136-140, 1991.
  27. Vankerckhoven H, Lambrechts P, Van Beylon M, et al. : Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res, 61:791-795, 1982. https://doi.org/10.1177/00220345820610062801
  28. Dall'Oca S, Papacchini F, Radovic I, et al. : Repair potential of a laboratory-processed nano-hybrid resin composite. J Oral Sci, 50:403-421, 2008. https://doi.org/10.2334/josnusd.50.403
  29. Kao EC, Pryor HG, Johnston WM : Strength of composites repaired by laminating with dissimilar composites. J Prosthet Dent, 60:328-333, 1988. https://doi.org/10.1016/0022-3913(88)90278-8
  30. Lucena-Martin C, Gonzalez-Lopez S, Navajas- Rodr?guez de Mondelo JM : The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J Prosthet Dent, 86:481-488, 2001. https://doi.org/10.1067/mpr.2001.116775
  31. Lewis G, Johnson W, Martin W, et al. : Shear bond strength of immediately repaired light-cured composite resin restorations. Oper Dent, 23:121-127, 1998.
  32. Fawzy AS, El-Askary FS, Amer MA : Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite. J Dent, 36:969-976, 2008. https://doi.org/10.1016/j.jdent.2008.07.014
  33. Ferracane JL, Greener EH : The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomedical Mater Res, 20:121-131, 1986. https://doi.org/10.1002/jbm.820200111
  34. Chung KH, Greener EH : Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J Oral Rehabil, 17:487-494, 1990. https://doi.org/10.1111/j.1365-2842.1990.tb01419.x
  35. 이연신, 최경규, 박상진 : 기질레진의 조성에 따른 복합레진의 물리적 성질에 관한 연구. 대한치과보존학회지, 27:77-86, 2002. https://doi.org/10.5395/JKACD.2002.27.1.077
  36. 최경호, 이주현, 박호원 : 광중합 복합레진의 색상과 깊이에 따른 중합도의 비교. 대한소아치과학회지, 31:280-289, 2004.
  37. Venhoven BAM, Gee AJ, Davidson CL : Light initiation of dental resins: dynamics of the polymerization. Biomater, 17:2313-2318, 1996. https://doi.org/10.1016/S0142-9612(96)00074-9
  38. Li J, Fok ASL, Satterthwaite J, et al. : Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dent Mater, 1411:1-7, 2008.
  39. Stansbury H, Bowman C : Impact of curing protocol on conversion and shrinkage stress. J Dent Res, 84:822-826, 2005. https://doi.org/10.1177/154405910508400908
  40. Komurcuoglu E, Olmez S, Vural N : Evaluation of residual monomer elimination methods in three different fissure sealants in vitro. J Oral Rehabil, 32:116-121, 2005. https://doi.org/10.1111/j.1365-2842.2004.01405.x
  41. Ferracane JL, Greener EH : FTIR analysis of degree of polymerization in unfilled resins methods comparison. J Dent Res, 63:1093-1095, 1984. https://doi.org/10.1177/00220345840630081901
  42. Pianelli C, Devaux J, Bebelman S, et al. : The micro-raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res, 48:675-681, 1999. https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<675::AID-JBM11>3.0.CO;2-P
  43. Dewald JP, Ferracane JL : A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res, 66:727-730, 1987. https://doi.org/10.1177/00220345870660030401
  44. 박종진, 박정원, 박성호 등 : 광조사 방식이 복합레진의 중합과 누출에 미치는 영향. 대한치과보존학회지, 27:158-174, 2002. https://doi.org/10.5395/JKACD.2002.27.2.158
  45. Cook WD : Spectral distributions of dental photopolymerization sources. J Dent Res, 61:1436- 1438, 1982.. https://doi.org/10.1177/00220345820610121201
  46. Sideridou ID, Achilias DS : Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res, 74:617-626, 2005.