DOI QR코드

DOI QR Code

Standardization of Bronchoalveolar Lavage Method Based on Suction Frequency Number and Lavage Fraction Number Using Rats

  • Song, Jeong-Ah (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Yang, Hyo-Seon (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Lee, Jin-Soo (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Kwon, Soon-Jin (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Jung, Kyung-Jin (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Heo, Jeong-Doo (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Cho, Kyu-Hyuk (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Song, Chang-Woo (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus) ;
  • Lee, Kyu-Hong (Division of Inhalation Toxicology, Korea Institute of Toxicology, Jeongup Campus)
  • Received : 2010.08.03
  • Accepted : 2010.08.13
  • Published : 2010.09.01

Abstract

Bronchoalveolar lavage (BAL) is a useful tool in researches and in clinical medicine of lung diseases because the BAL fluid contains biochemical and cytological indicators of the cellular response to infection, drugs, or toxicants. However, the variability among laboratories regarding the technique and the processing of the BAL material limits clinical research. The aim of this study was to determine the suction frequency and lavage fraction number necessary to reduce the variability in lavage using male Sprague-Dawley rats. We compared the total cell number and protein level of each lavage fraction and concluded that more cells and protein can be obtained by repetitive lavage with a suction frequency of 2 or 3 than by lavage with a single suction. On the basis of total cell recovery, approximately 70% of cells were obtained from fractions 1~3. The first lavage fraction should be used for evaluation of protein concentration because fractions 2~5 of lavage fluid were diluted in manifolds. These observations were confirmed in bleomycin-induced inflamed lungs of rats. We further compared the BAL data from the whole lobes with data from the right lobes and concluded that BAL data of the right lobes represented data of the whole lobes. However, this conclusion can only be applied to general lung diseases. At the end, this study provides an insight into the technical or analytical problems of lavage study in vivo.

Keywords

References

  1. Baughman, R.P. (1997) . The uncertainties of bronchoalveolar lavage. Eur. Respir. J., 10, 1940-1942. https://doi.org/10.1183/09031936.97.10091940
  2. Bowler, R.P., Ellison, M.C. and Reisdorph, N. (2006). Proteomicsin pulmonary medicine. Chest., 130, 567-574. https://doi.org/10.1378/chest.130.2.567
  3. Cemlyn-Jones J. and Cordeiro, C.R. (2008). Bronchoalveolar Lavage - Do We Need It?. European Respiratory Disease, 4, 33-35.
  4. Crystal, R.G., Reynolds, H.Y. and Kalica, A.R. (1986). Bronchoalveolar lavage. The report of an international conference. Chest., 90, 122-131. https://doi.org/10.1378/chest.90.1.122
  5. Daniele, R.P., Elias, J.A., Epstein, P.E. and Rossman, M.D. (1985). Bronchoalveolar lavage: role in the pathogenesis, diagnosis, and management of interstitial lung disease. Ann. Intern. Med., 102, 93-108. https://doi.org/10.7326/0003-4819-102-1-93
  6. Drent, M., Cobben, N.A., Henderson, R.F., Wouters, E.F. and vanDieijen-Visser, M. (1996). Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur. Respir. J., 9, 1736-1742. https://doi.org/10.1183/09031936.96.09081736
  7. Eklund, A., Tornling, G., Blaschke, E. and Curstedt, T. (1991).Extracellular matrix components in bronchoalveolar lavage fluid in quartz exposed rats. Br. J. Ind. Med., 48, 776-82.
  8. Forget, G., Lacroix, M.J., Cadieux, A., Calvert, R., Grose, J.H. and Sirois, P. (1983). An adherent cell perifusion technique to study the overall and sequential response of rat alveolar macrophages to toxic substances. Environ Health Perspect., 51, 131-140. https://doi.org/10.2307/3429740
  9. Gee, J.B. and Fick, R.B Jr. (1980). Bronchoalveolar lavage. Thorax.,35, 1-8. https://doi.org/10.1136/thx.35.1.1
  10. Haslam, P.L., Turton, C.W., Heard, B., Lukoszek, A., Collins, J.V.,Salsbury, A.J. and Turner-Warwick, M. (1980). Bronchoalveolar lavage in pulmonary fibrosis: comparison of cells obtained with lung biopsy and clinical features. Thorax., 35, 9-18. https://doi.org/10.1136/thx.35.1.9
  11. Haslam, P.L. and Baughman, R.P. (1999). Report of ERS Task Force: guidelines for measurement of acellular components and standardization of BAL. Eur. Respir. J., 14, 245-248.
  12. Henderson, R.F. (1984). Use of bronchoalveolar lavage to detect lung damage. Environ Health Perspect., 56, 115-129. https://doi.org/10.2307/3429841
  13. Hirsch, J., Hansen, K.C., Burlingame, A.L. and Matthay, M.A. (2004). Proteomics: current techniques and potential applications to lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 287, L1-L23. https://doi.org/10.1152/ajplung.00301.2003
  14. Hunninghake, G.W., Gadek, J.E., Kawanami, O., Ferrans, V.J. and Crystal, R.G. (1979). Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage. Am. J. Pathol., 97, 149-206.
  15. Kelly, C.A., Ward, C., Stenton, S.C., Hendrick, D.J. and Walters, E.H. (1988). Assessment of pulmonary macrophage and neutrophil function in sequential bronchoalveolar lavage aspirates in sarcoidosis. Thorax., 43, 787-791. https://doi.org/10.1136/thx.43.10.787
  16. Kim, J.Y., Choeng, H.C., Ahn, C.M. and Cho, S.H. (2009). Earlyand late changes of MMP-2 and MMP-9 in bleomycin-induced pulmonary fibrosis. Yonsei Med. J., 50, 68-77. https://doi.org/10.3349/ymj.2009.50.1.68
  17. Klech, H. and Hutter, C. (1990). Clinical guidelines and indications for bronchoalveolar lavage (BAL): Report of the european society of pneumology task group on BAL. Eur. Respir. J., 3, 937-976.
  18. Majetschak, M., Sorell, L.T., Patricelli, T., Seutzm, D.H. andKnoferl, M.W. (2009). Detection and possible role of proteasomesin the bronchoalveolar space of the injured lung. PhysiolPhysiol.Res., 58, 363-372.
  19. Olsen, G.N., Harris, J.O., Castle, J.R., Waldman, R.H. and Karmgard, H.J. (1975). Alpha-1-antitrypsin content in the serum,alveolar macrophages, and alveolar lavage fluid of smoking andnonsmoking normal subjects. J. Clin. Invest., 55, 427-430. https://doi.org/10.1172/JCI107947
  20. Rehn, B., Bruch, J., Zou, T. and Hobusch, G. (1992). Recovery of rat alveolar macrophages by broncholaveolar lavage under normal and activated conditions. Environ. Health Perspect., 97, 11-16. https://doi.org/10.1289/ehp.929711
  21. Sung, J.H., Choi, B.G., Maeng, S.H., Kim, S.J., Chung, Y.H., Han, J.H., Song, K.S., Lee, Y.H., Cho, Y.B., Cho, M.H., Kim, K.J., Hyun, J.S. and Yu, I.J. (2004). Recovery from welding-fumeexposure-induced lung fibrosis and pulmonary function changes in sprague dawley rats. Toxicol. Sci., 82, 608-613. https://doi.org/10.1093/toxsci/kfh289
  22. Tornling, G., Eklund, A., Engström-Laurent, A., Hällgren, R.,Unge, G. and Westman, B. (1987). Hyaluronic acid in bronchoalveolar lavage in rats exposed to quartz. Br. J. Ind .Med., 44, 443-445.
  23. Varner, A.E., Sorkness, R.L., Kumar, A., Kaplan, M.R. andLemanske, R.F. Jr. (1999). Serial segmental bronchoalveolar lavage in individual rats. J. Appl. Physiol., 87, 1230-1233. https://doi.org/10.1152/jappl.1999.87.3.1230
  24. Walters, E.H. and Gardiner, P.V. (1991). Bronchoalveolar lavageas a research tool. Thorax., 46, 613-618. https://doi.org/10.1136/thx.46.9.613
  25. Walters, D.M., Wills-Karp. M. and Mitzner, W. (2000). Assessmentof cellular profile and lung function with repeated bronchoalveolar lavage in individual mice. Physiol Genomics., 24,29-36.
  26. OECD Environment, Health and Safety Publications (2009).Series on Testing and Assessment No. 39 Guidance document on acute inhalation toxicity testing, Paris, pp. 47-49.

Cited by

  1. Neutralization of nerve growth factor (NGF) inhibits the Th2 response and protects against the respiratory syncytial virus (RSV) infection vol.65, pp.3, 2017, https://doi.org/10.1007/s12026-017-8909-z
  2. Euthanasia- and Lavage-mediated Effects on Bronchoalveolar Measures of Lung Injury and Inflammation vol.59, pp.2, 2018, https://doi.org/10.1165/rcmb.2017-0357OC
  3. lung infection vol.294, pp.2, 2018, https://doi.org/10.1074/jbc.RA118.006022