Magnetic Properties of Cu-doped AlN Semiconductor

AlN 반도체와 Cu의 도핑 농도에 대한 자성

  • Kang, Byung-Sub (BK 21 Program and Department of Physics, Chungbuk National University) ;
  • Lee, Haeng-Ki (Department of Radiotechnology, Daegu Polytechnic College)
  • 강병섭 (충북대학교 자연과학대학 물리학과) ;
  • 이행기 (대구산업정보대학 방사선과)
  • Received : 2010.05.28
  • Accepted : 2010.07.31
  • Published : 2010.09.30

Abstract

First-principles calculations based on spin density functional theory are performed to study the spin-resolved electronic properties of AlN doped with a Cu concentration of 6.25%-18.75%. The ferromagnetic state is more energetically favorable state than the antiferromagnetic state or the nonmagnetic state. For $Al_{0.9375}Cu_{0.0625}N$, a global magnetic moment of 1.26 mB per supercell, with a localized magnetic moment of 0.75 $m_B$ per Cu atom is found. The magnetic moment is reduced due to an increase in the number of Cu atoms occupying adjacent cation lattice position. For $Al_{0.8125}Cu_{0.1875}N$, the magnetism of the supercell disappears by the interaction of the neighboring Cu atoms. The nonmagnetic to ferromagnetic phase transition is found to occur at this Cu concentration. The range of concentrations that are spin-polarized should be restricted within very narrow.

Keywords

References

  1. J. Zhang, X.Z. Li, B. Xu, and D.J. Sellmyer, "The Influence of Nitrogen Growth Pressure on the Ferromagnetism of Cr-Doped AlN Thin Films," Applied Physics Letters, Vol. 86, pp.212504, 2005. https://doi.org/10.1063/1.1940131
  2. R. Frazier, G. Thaler, M. Overberg, B. Gila, C.R. Abernathy, and S.J. Peraton, "Indication of hysteresis in AlMnN," Applied Physics Letters, Vol.83(9), pp.1758, 2003. https://doi.org/10.1063/1.1604465
  3. S.G. Yang, A.B. Pakhomov, S.T. Hung and C.Y. Wong, "Room-temperature magnetism in Cr-doped AlN semiconductor films," Applied Physics Letters, Vol.81(13), pp.2418, 2002. https://doi.org/10.1063/1.1509475
  4. S.T. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. Schilfgarde, M.R. McCartney, D.J. Simth and N. Newman, "Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films," Applied Physics Letters, Vol.82(18), pp.3047, 2003. https://doi.org/10.1063/1.1570521
  5. J. M. Baik, H.W. Jong, J.K. Kim, and J.L. Lee, "Effect of microstructural change on magnetic property of Mn-implanted p-type GaN," Applied Physics Letters, Vol.82(4), pp.583, 2003. https://doi.org/10.1063/1.1541111
  6. S. Dhar, O. Brandt, A. Trampert, L. Daeweritz, K.J. Friedland, K.H. Ploog, J. Leller, B. Beschoten, and G. Guntherodt, "Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H-SiC(0001) by reactive molecular-beam epitaxy," Applied Physics Letters, Vol.82(13), pp.2077, 2003. https://doi.org/10.1063/1.1564292
  7. M. S. Park and B. I. Min, "Ferromagnetism in ZnO codoped with transition metals:$Zn_{1-X}(FeCo)_{X}O$ and $Zn_{1-X}(FeCu)_{X}O$," Physical Review B, Vol.68, pp224436, 2003. https://doi.org/10.1103/PhysRevB.68.224436
  8. C. H. Chien, S. H. Chion, G. Y. Gao, and Y. -D,. Yao, "Electronic structure and magnetic moments of 3d transition metal-doped ZnO," J. of Magnetism and Magnetic Materials, Vol.282, pp.275, 2004. https://doi.org/10.1016/j.jmmm.2004.04.064
  9. X. Feng, "Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO," J. of Physics: Condensed Matter, Vol.16, pp.4251, 2004. https://doi.org/10.1088/0953-8984/16/24/007
  10. L. H. Ye, A. J. Freeman, and B. Delley, "Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations," Physical Review B, Vol.73, pp. 033203, 2006. https://doi.org/10.1103/PhysRevB.73.033203
  11. D. B. Buchholz, R. P. H. Chang, J. H. Song, and J. B. Ketterson, "Room-temperature ferromagnetism in Cu-doped ZnO thin films," Applied Physics Letters, Vol.87(8), pp.082504, 2005. https://doi.org/10.1063/1.2032588
  12. B. S. Kang, W. C. Kim, Y. Y. Shong, and H. J. Kang, "Ab initio study of ZnO- and GaN-based diluted magnetic semiconductors and its magnetic properties," J. of Crystal Growth, Vol.287, pp.74, 2006. https://doi.org/10.1016/j.jcrysgro.2005.10.046
  13. S. Yu, Savrasov, "Linear-response theory and lattice dynamics: A muffintin-orbital approach," Physical Review B, Vol.54, pp.16470, 1996. https://doi.org/10.1103/PhysRevB.54.16470
  14. Yue Wang and John P. Perdew, "Spin scaling of the electron-gas correlation energy in the high-density limit," Physical Review B, Vol.43, pp.8911, 1991. https://doi.org/10.1103/PhysRevB.43.8911
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letter, Vol.77, pp.3865, 1996. https://doi.org/10.1103/PhysRevLett.77.3865
  16. R. Q. Wu, G. W. Peng, L. Liu, and Y. P. Feng, Z. G. Huang, and Q. Y. Wu, "Cu-doped GaN: A dilute magnetic semiconductor from first-principles study", Applied Physics Letters, Vol.89, pp.062505, 2006. https://doi.org/10.1063/1.2335773
  17. L. H. Ye, A. J. Freeman, and B. Delley, "Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations," Physical Review B, Vol.73, pp.033203, 2006. https://doi.org/10.1103/PhysRevB.73.033203
  18. S. H. Wei and A. Zunger, "Valence band splittings and band offsets of AlN, GaN and InN" Applied Physics Letters, Vol.69(18), pp.2719, 1996. https://doi.org/10.1063/1.117689