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Abstract
Lee (2010) developed a confidence interval for the difference of binomial proportions in two doubly sampled

data subject to false-positive errors. The confidence interval seems to be adequate for a general double sampling
model subject to false-positive misclassification. However, in many applications, the false-positive error rates
could be the same. On this note, the construction of asymptotic confidence interval is considered when the
false-positive error rates are common. The coverage behaviors of nine likelihood based confidence intervals are
examined. It is shown that the confidence interval based Rao score with the expected information has good
performance in terms of coverage probability and expected width.
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1. Introduction

Suppose that binary observations are obtained by classifying experimental or sampling units into
two mutually exclusive categories. Usually a researcher uses inerrant device for the classification.
However, when the cost of precise classification is expensive, a researcher often uses an inexpensive
but fallible classifier with a supplementary inerrant classifier. For instance, the case-control study
of Hildesheim et al. (1991) aimed to examine that invasive cervical cancer can affect exposure to
Herpes Simplex Virus(HSV). For the study, western blot procedure, which was known to be relatively
inaccurate in detecting the infection of HSV, was applied to about two thousand women in case and
control groups. Since the western blot procedure is fallible, it may classify an infected woman as
normal (false-negative) and vice versa (false-positive). That is, the observations were exposed to
measurement error, and the error rates as well as the true proportion of infection in each group are
unestimable. To make the problem estimable, an additional data was necessary. A small subsample
from each group was further investigated by refined western procedure which is the inerrant device.

The sampling scheme employed in the case-control study is so-called double sampling. There
are numerous examples using the advantages of the double sampling scheme; see Geng and Asano
(1989), York et al.(1995), Moors et al.(2000), Barnett et al. (2001), Raats and Moor (2003) and Boese
et al. (2006). For instance, York et al. (1995) illustrated the advantage of the double sampling scheme
in estimating the proportion of infants born with Down’s syndrome nationwide.

Some fallible devices may have only one type of misclassification. For example, Lie et al. (1994)
considered the case that the false-negative counts were corrected using multiple fallible classifiers
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and gave the ML estimators. The same model was considered by York et al. (1995). They estimated
the proportion of Down’s syndrome in Norway from the Bayesian perspective. Moors et al. (2000)
analyzed an auditing data with no observed false-negative count. They put the corresponding error rate
equal to zero a priori, and gave one-sided confidence intervals for the population proportion. Boese et
al. (2006) gave five likelihood-based confidence intervals in the false-positive misclassification model.
Among them, they recommended the interval based on the Rao score function. The recommended
interval seems to have a good frequentist property in that it has the coverage probability close to the
nominal level. Under the same model, Lee and Byun (2008) gave a Bayesian confidence interval
which slightly outperforms the confidence interval recommended by Boese et al. (2006).

Recently a two-sample problem was considered by Lee (2010). He investigated the interval es-
timation for the difference of population proportions using two doubly sampled data. In this paper,
we consider the same problem, but assume the false-positive error rates are common. It is shown
that the score statistic scaled by the expected information provide an efficient interval estimate. If the
false-positive error rate is common in two data sets, then the confidence interval is more efficient than
the corresponding confidence interval considered in Lee (2010).

2. Doubly Sampling Model with a Common False-Positive Error Rate

In what follows, we will use the same notation of Lee (2010). That is, for each unit tested by the
inerrant device, let Ti = 1, if ith unit is recorded positive (or a success), and Ti = 0, otherwise.
Likewise, for each unit tested by the fallible device, define Fi = 1, if ith unit is classified as positive,
and Fi = 0, otherwise. Then, the proportion of positive can be written as:

p = Pr [Ti = 1] ,

while the false-positive error rate incurred by the fallible device are defined to be

ϕ = Pr [Fi = 1|Ti = 0] .

The false-negative error is assumed to be zero in this paper. Also we assume that the misclassification
errors are independent from sampling unit to sampling unit.

Each unit in the subsample belongs to one of three mutually disjoint categories {(t, f )|(0, 0), (0, 1),
(1, 1)} with probabilities (1 − p)(1 − ϕ), (1 − p)ϕ and p, respectively. Let nt f denote the number of
units in (t, f ). Among N − n units tested only by a fallible device, let x be the number of units tested
positively and y be the number of units tested negatively. Then, the joint likelihood of p and ϕ is

L(p, ϕ;Y) = C(Y) (1 − p)n0�+y pn11 (1 − ϕ)n00+yϕn01πx,

where C(Y) = n!/(n00!n01!n11!)
(

N−n
x

)
, nt� = nt0 + nt1, π = Pr [Fi = 1] = p+ (1− p)ϕ andY represents

(n00, n01, n11, x, y).
A two-sample double sampling model consists of two data sets Y1 = (n100, n101, n111, x1, y1)

and Y2 = (n200, n201, n211, x2, y2), where each Yi is sampled from L(pi, ϕi, ;Yi) independently. Let
λ = p1 − p2, then the joint likelihood of λ and Θ∗ = (p2, ϕ1, ϕ2) can be written as:

L(λ,Θ∗;Y1,Y2) = L(λ + p2, ϕ1;Y1)L(p2, ϕ2;Y2). (2.1)

Model (2.1) was considered by Lee (2010). He derived six asymptotic confidence intervals for λ,
and compared the performance of confidence intervals in terms of coverage probability and expected
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width. It was shown that Bayesian confidence intervals outperformed the other five likelihood-based
confidence intervals.

(2.1) is adequate for the inference of λ in general. However, if we note that the false-positive error
rate is a characteristic of a fallible device, not a characteristic of population, there are cases in which it
may be logical to assume ϕ1 = ϕ2. For instance, if the same fallible device is applied to obtainY1 and
Y2 as the case-control study of Hildesheim et al. (1991), then the data sets probably have a common
error rate and the joint likelihood of λ and Θ = (p2, ϕ) is

L(λ,Θ;Y1,Y2) = L(λ + p2, ϕ;Y1)L(p2, ϕ;Y2). (2.2)

The assumption of a common false-positive error rate can reduce the dimension of the parameter
space. However, the reduction of dimension does not mean that the model becomes more tractable. On
the contrary, the reduction requires more computational expense. For instance, (2.2) does not admit
the closed form maximum likelihood estimators. Nonetheless, we will see that the computational
expense could be compensated by the efficiency of the inferential method.

3. Likelihood and Profile Likelihood

3.1. Maximum likelihood estimates

Taking logarithm on (2.2), we have

ℓ(λ,Θ) = (n10� + y1) log(1 − λ − p2) + n111 log(λ + p2) + (n20� + y2) log(1 − p2) + n211 log p2+

(n100 + n200 + y1 + y2) log(1 − ϕ) + (n101 + n201) log ϕ + x1 log π1 + x2 log π2,

where π1 = (1 − λ − p2)ϕ + (λ + p2) and π2 = (1 − p2)ϕ + p2. The maximum likelihood estimates are
the solutions of the following likelihood equations:

0 = − n10� + y1

1 − λ − p2
+

n111

λ + p2
+

(1 − ϕ)x1

π1
(3.1)

0 = − n10� + y1

1 − λ − p2
+

n111

λ + p2
− n20� + y2

1 − p2
+

n211

p2
+ (1 − ϕ)

(
x1

π1
+

x2

π2

)
(3.2)

0 = −n100 + n200 + y1 + y2

1 − ϕ +
n101 + n201

ϕ
+

(1 − λ − p2)x1

π1
+

(1 − p2)x2

π2
. (3.3)

Given the value of λ, the last two equations, (3.2) and (3.3) form the profile likelihood equations.
Note when nit f = 0 for some (i, t, f ), the maximum likelihood estimates cannot be defined; see

Tenenbein (1970) for further detail. Similarly, the profile log-likelihood does not admit unique max-
imum. A customary remedy to prevent the undefined problem is to add a small number, say 0.005
to null observed counts. Thus we will add a small number when necessary for the calculation of
likelihood or profile likelihood equations.

Suppose ϕ̂ is the unique solution of a nonlinear equation on ϕ ∈ (0, 1)

n101 + n201

ϕ
− n111

1 − p̃(ϕ; n111, x1,N1)
p̃(ϕ; n111, x1,N1)

− n211
1 − p̃(ϕ; n211, x2,N2)

p̃(ϕ; n211, x2,N2)
= 0,

where

p̃(ϕ; n11, x,N) =
(x + n11 − (N + n11)ϕ) +

√
(x + n11 − (N + n11)ϕ)2 + 4n11Nϕ(1 − ϕ)

2N(1 − ϕ) .
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Then, it can be shown that ϕ̂, p̂2 = p̃(ϕ̂; n211, x2,N2) and λ̂ = p̃(ϕ̂; n111, x1,N1) − p̂2 satisfy the likeli-
hood equations. Thus, a simple numerical algorithm such as the bisection method can be applicable
to obtain the maximum likelihood estimates of λ, p2 and ϕ.

3.2. Profile likelihood and information

Next, we consider the solutions of profile likelihood equations which are essential in what follows.
Since π1 = π2 + λ(1 − ϕ), (3.3) is equivalent to

A(ϕ)π2
2 − (x1 + x2 − λ(1 − ϕ)A(ϕ)) π2 − λ(1 − ϕ)x2 = 0,

where A(ϕ) = (N1 − n111 + N2 − n211) − (n101 + n201)/ϕ. Note that due to (3.2), A(ϕ) > 0. Then, given
λ and ϕ,

π̃λ2(ϕ) =
x1 + x2 − λ(1 − ϕ)A(ϕ) +

√
(x1 + x2 − λ(1 − ϕ)A(ϕ))2 + 4λ(1 − ϕ)A(ϕ)x2

2A(ϕ)

satisfies (3.3), and the profile likelihood equations are equivalent to(
1 − p̃λ2(ϕ)

) N1 −
n111

p̃λ1(ϕ)
− x1

π̃λ1(ϕ)

 + (
1 − p̃λ1(ϕ)

) N2 −
n211

p̃λ2(ϕ)
− x2

π̃λ2(ϕ)

 = 0, (3.4)

where p̃λ1(ϕ) = (π̃λ2(ϕ)+λ(1−ϕ)−ϕ))/(1−ϕ), p̃λ2(ϕ) = (π̃λ2(ϕ)−ϕ))/(1−ϕ) and π̃λ1(ϕ) = π̃λ2(ϕ)+λ(1−ϕ).
Thus, we can get a nontrivial nonlinear equation of ϕ for a given λ ∈ (−1, 1), which can solve the
profile likelihood equations.

As a function of ϕ, (3.4) does not admit unique solution on ϕ ∈ (0, 1). However, given λ ∈ (−1, 1),
p2 = (π2 − ϕ)/(1 − ϕ) ranges from max(0,−λ) to min(1, 1 − λ). Thus, we should find the solution on

Φλ =

ϕ ∈ (0, 1)

∣∣∣∣∣∣max(0,−λ) <
π̃λ2(ϕ) − ϕ

1 − ϕ < min(1, 1 − λ)
 .

Note that Φλ = (ϕλ0, ϕ
λ
1) where

ϕλ0 =



λ(A + B − x1) − A + x1 + x2 +
√

(λ(A + B − x1) − A + x1 + x2)2 + 4λ(1 − λ)(A − x1)B

2λ(A − x1)
, λ > 0,

λ(x2 − A − B) − A + x1 + x2 +
√

(λ(x2 − A − B) − A + x1 + x2)2 + 4λ(1 + λ)B(x2 − A)

2λ(x2 − A)
, λ < 0,

B
A − x1 − x2

, λ = 0

and

ϕλ1 =


B − λ(A + B + x2) + x1 + x2 +

√
(B − λ(A + B + x2) + x1 + x2)2 + 4λ(1 − λ)A(B + x2)

2(1 − λ)A , λ > 0,

(1+λ)(B +x1+x2)+λ(A−x2)+
√

((1 + λ)(B + x1 + x2) + λ(A − x2))2 − 4λ(1 + λ)A(B + x1)

2(1 + λ)A
, λ < 0

with A = N1 − n111 + N2 − n211 and B = n101 + n201. Again, a simple numerical algorithm can be
applicable to obtain the unique solution of (3.4), say ϕ̂λ. Once we have ϕ̂λ, the profile likelihood is
maximized at (p̂λ2, ϕ̂

λ) where p̂λ2 = p̃λ2(ϕ̂λ).
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The observed information matrix consists of minus the second-order derivatives of ℓ(λ,Θ):

Jλλ = Jλp2 =
n10� + y1

(1 − p1)2 +
n111

p2
1

+
(1 − ϕ)2x1

π2
1

, Jλϕ =
x1

π2
1

,

Jp2p2 = Jλλ +
n20� + y2

(1 − p2)2 +
n211

p2
2

+
(1 − ϕ)2x2

π2
2

, Jp2ϕ =
x1

π2
1

+
x2

π2
2

,

Jϕϕ =
n100 + n200 + y1 + y2

(1 − ϕ)2 +
n101 + n201

ϕ2 +
(1 − p1)2x1

π2
1

+
(1 − p2)2x2

π2
2

,

where p1 = λ + p2. Replacing observed counts by their expectation, we have

Iλλ = Iλp2 =
n1 + (N1 − n1)(1 − ϕ)

(1 − p1)
+

n1

p1
+

(1 − ϕ)2(N1 − n1)
π1

, Iλϕ =
N1 − n1

π1
,

Ip2p2 = Iλλ +
n2 + (N2 − n2)(1 − ϕ)

(1 − p2)
+

n2

p2
+

(1 − ϕ)2(N2 − n2)
π2

, Ip2ϕ =
N1 − n1

π1
+

N2 − n2

π2
,

Iϕϕ =
N1(1−p1)+N2(1−p2)

1−ϕ +
n1(1−p1)+n2(1−p2)

ϕ
+

(1−p1)2(N1−n1)
π1

+
(1−p2)2(N2−n2)

π2
.

Then the observed information for λ is obtained from

Jλλ(λ,Θ) = Jλλ − (Jλp2 , Jλϕ)
(
Jp2 p2 Jp2ϕ

Ip2ϕ Jϕϕ

)−1 (
Jλp2

Jλϕ

)
. (3.5)

Similarly, the expected information for λ, Iλλ(λ,Θ) can be obtained by replacing J notation in (3.5)
by I notation.

3.3. Likelihood-based confidence intervals

A large sample theory indicates that λ̂ is asymptotically normally distributed with mean λ and in-
verse variance Iλλ(λ,Θ). Thus, the asymptotic distribution of (λ̂ − λ)2Iλλ(λ,Θ) is a χ2-distribution
with 1 degree of freedom. However, the existence of nuisance parameters, Θ prevent us from us-
ing this result directly. Barndorff-Nielsen and Cox (1994) suggested that Iλλ(λ,Θ) can be replaced by
Iλλ(λ, Θ̂λ), Iλλ(λ̂, Θ̂), Jλλ(λ, Θ̂λ) and Jλλ(λ̂, Θ̂). Hence four Wald-like confidence intervals can be setup
as follow:

WEP =

{
λ :

(
λ̂ − λ

)2
Iλλ

(
λ, Θ̂λ

)
≤ z2
α

}
,

WEM =

{
λ :

(
λ̂ − λ

)2
Iλλ

(
λ̂, Θ̂

)
≤ z2
α

}
,

WOP =

{
λ :

(
λ̂ − λ

)2
Jλλ

(
λ, Θ̂λ

)
≤ z2
α

}
and

WOM =

{
λ :

(
λ̂ − λ

)2
Jλλ

(
λ̂, Θ̂

)
≤ z2
α

}
.

Next four asymptotic confidence intervals are based on the score statistic obtained from (3.1)

Uλ
(
Θ̂λ

)
= −n10� + y1

1 − p̂λ1
+

n111

p̂λ1
+

(1 − ϕ̂λ)x1

π̂λ1
,
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Table 1: Case-control data of Hildesheim et al. (1991) (absorbing false-negatives into true-positives)
Fallible device

Control group Case group
Inerrant device 0 1 0 1

Subsample 0 33 11 13 3
1 na 32 na 23

701 535 318 375

Table 2: 95% Confidence limits of λ of case-control data of Hildesheim et al. (1991) (absorbing false-negatives
into true-positives)

Confidence interval Common false-positive error No restriction
WEP ( −.0936, 0.0119 ) ( −.254, 0.034 )
WEM ( −.0920, 0.0120 ) not available
WOP ( −.0928, 0.0115 ) not available
WOM ( −.0918, 0.0118 ) not available
S EP ( −.0917, 0.0113 ) ( −.238, −0.058 )
S EM ( −.0924, 0.0112 ) not available
S OP ( −.0916, 0.0117 ) not available
S OM ( −.0926, 0.0114 ) not available
LR ( −.1361, −.0068 ) ( −.247, −0.052 )

which is also known to asymptotically normally distribute with mean 0 and variance Iλλ(λ,Θ). As
before, four asymptotic confidence intervals can be setup as:

S EP =

{
λ :

[
Uλ

(
Θ̂λ

)]2 [
Iλλ

(
λ, Θ̂λ

)]−1 ≤ z2
α

}
,

S EM =

{
λ :

[
Uλ

(
Θ̂λ

)]2 [
Iλλ

(
λ̂, Θ̂

)]−1 ≤ z2
α

}
,

S OP =

{
λ :

[
Uλ

(
Θ̂λ

)]2 [
Jλλ

(
λ, Θ̂λ

)]−1 ≤ z2
α

}
and

S OM =

{
λ :

[
Uλ

(
Θ̂λ

)]2 [
Jλλ

(
λ̂, Θ̂

)]−1 ≤ z2
α

}
.

The last likelihood-based confidence interval is due to the well-known log-likelihood ratio statistic,

LR =
{
λ : 2

[
ℓ
(
λ̂, Θ̂

)
− ℓ

(
λ, Θ̂λ

)]
≤ z2
α/2

}
.

3.4. An example

The case-control study of Hildesheim et al. (1991) examined that invasive cervical cancer can affect
exposure to Herpes Simplex Virus(HSV). To explore the relationship, western blot procedure was
applied to 693 women in the case group and for 1236 women in the control group to detect the
infection of HSV. Since the western blot procedure is fallible, a sub-sample from each group was
further investigated by refined western blot procedure, which is known to be a relatively accurate
procedure. Originally the fallible procedure is exposed to the two types of error, but we assume the
false-negative error rate is zero. The false-negative cases are absorbed into the true-positive. This
artificial data is shown in Table 1.

The artificial data was analyzed by Lee (2010). Presumably he considered that there were no real
restrictions on parameters. However, it may be logical to assume that the false-positive error rate
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Table 3: Averages of 81 estimated coverage probabilities, expected widths and AMADN of MLE based
confidence intervals

ϕ
Group 1 Group 2 Average coverage probability and expected width, AMADN × 10,000
N1 n1 N2 n2 WEP WEM WOP WOM LR

0.1

100 20

100 20 .947 .270 375 .918 .330 3169 .957 .313 721 .941 .266 949 .943 .267 757
30 .947 .265 332 .916 .325 3362 .955 .292 548 .942 .263 793 .944 .264 648

200 40 .948 .232 327 .911 .287 3872 .956 .278 653 .942 .230 823 .944 .231 673
60 .948 .229 232 .911 .283 3950 .954 .246 418 .943 .228 719 .944 .229 578

300 60 .949 .217 250 .909 .270 4108 .955 .264 611 .942 .216 814 .944 .217 655
90 .949 .215 244 .908 .266 4236 .954 .230 416 .943 .215 766 .944 .215 608

200 40
200 40 .948 .191 294 .891 .252 5886 .954 .215 512 .946 .189 496 .947 .190 420

60 .948 .186 251 .886 .247 6417 .952 .196 343 .947 .185 390 .947 .186 333

300 60 .948 .174 249 .883 .233 6660 .954 .200 445 .946 .173 434 .947 .173 369
90 .949 .171 262 .881 .230 6901 .952 .181 342 .947 .171 411 .947 .171 353

0.2

100 20

100 20 .947 .294 372 .914 .370 3558 .956 .322 686 .939 .291 1200 .940 .293 1055
30 .947 .287 335 .911 .366 3931 .955 .306 548 .940 .285 1023 .942 .286 888

200 40 .948 .253 297 .907 .325 4277 .955 .280 566 .940 .252 1043 .941 .253 902
60 .948 .249 250 .904 .321 4562 .953 .260 410 .940 .248 1024 .942 .249 866

300 60 .948 .237 267 .903 .307 4659 .954 .265 496 .939 .237 1092 .941 .238 929
90 .949 .233 234 .902 .303 4814 .953 .242 325 .940 .234 1056 .941 .235 887

200 40
200 40 .948 .208 252 .884 .288 6621 .954 .223 483 .945 .208 598 .945 .208 520

60 .949 .201 234 .875 .285 7521 .952 .207 324 .946 .200 470 .947 .201 415

300 60 .949 .190 233 .875 .268 7475 .953 .203 392 .945 .189 537 .946 .190 466
90 .949 .186 240 .870 .266 7967 .952 .192 327 .945 .186 516 .946 .186 445

is common, since the same fallible device was applied to both case and control groups. Under this
assumption, the maximum likelihood estimate of λ was −0.040, which is somewhat different from
−0.157 of Lee (2010). Similarly the maximum likelihood estimate of ϕ was 0.1435, but Lee (2010)
gave 0.1677 and 0.1226 for control and case groups, respectively. The limits of 95% confidence
intervals for λ are shown in Table 2. The confidence limits calculated by Lee (2010) are also tabulated
for comparison. It can be seen that the confidence intervals of a common false-positive model have
significantly narrow widthes than the corresponding confidence intervals of the no restriction model.

4. Comparison of Confidence Intervals

The likelihood-based confidence intervals are computationally expensive. They require several iter-
ative numerical computations to calculate confidence limits. Practically, it is hard to compute actual
coverage probability or expected width. For instance, when N1 = N2 = 100 and n1 = n2 = 20, it
requires 18, 711 × 18, 711 = 350, 101, 521 iterations to calculate actual coverage probability for each
parameter point (p1, p2). Thus, we abandon comparing actual values. The comparison is done through
simulations.

We estimated the coverage probability and the expected width of 95% confidence intervals at every
81 grid points of (p1, p2) where pi = 0.1 up to 0.9 with 10,000 random samples under various values
of N1, n2,N2 and n2, and then calculated the averages of these 81 estimated coverage probabilities
and expected widths. We also computed the averages of the mean absolute deviation of coverage
probabilities from nominal level (AMADN). The AMADN is multiplied by 10,000. The false-positive
error rate considered in this simulation study was 0.1 and 0.2, because it is not large in general. The
results are shown in Table 3 and 4. The random samples were generated by IMSL FORTRAN Library.

Table 3 demonstrates the performance of five confidence intervals based on the maximum likeli-
hood estimate(MLE). Among them, the coverage probability of WEP is closest to the nominal level. It
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Table 4: Averages of 81 estimated coverage probabilities, expected widths and AMADN of score based
confidence intervals

ϕ
Group 1 Group 2 Average coverage probability and expected width, AMADN × 10,000
N1 n1 N2 n2 S EP S EM S OP S OM

0.1

100 20

100 20 .950 .271 200 .954 .287 451 .942 .283 892 .953 .285 410
30 .950 .266 166 .953 .276 347 .944 .271 695 .952 .274 309

200 40 .950 .233 198 .953 .241 373 .945 .257 652 .952 .240 349
60 .950 .230 165 .953 .236 364 .946 .235 540 .953 .235 339

300 60 .950 .218 167 .954 .224 370 .947 .250 510 .953 .223 349
90 .951 .215 177 .954 .220 447 .947 .223 442 .954 .220 418

200 40
200 40 .950 .191 176 .952 .194 268 .947 .199 491 .951 .193 259

60 .950 .186 169 .951 .188 242 .948 .189 337 .951 .187 229

300 60 .949 .174 170 .951 .176 234 .947 .188 416 .951 .176 234
90 .950 .172 195 .951 .173 249 .948 .174 360 .951 .173 249

0.2

100 20

100 20 .950 .295 191 .955 .311 535 .941 .301 959 .955 .310 508
30 .949 .288 170 .954 .298 450 .942 .291 810 .953 .297 425

200 40 .950 .254 171 .954 .264 465 .943 .266 711 .953 .262 445
60 .950 .249 181 .954 .257 441 .944 .253 618 .954 .256 430

300 60 .950 .238 203 .954 .246 446 .945 .257 608 .954 .245 422
90 .950 .234 175 .954 .241 470 .945 .238 556 .954 .240 460

200 40
200 40 .950 .209 183 .952 .213 305 .946 .212 459 .952 .212 298

60 .950 .201 182 .952 .203 282 .947 .202 376 .952 .203 276

300 60 .950 .190 164 .952 .193 291 .946 .194 424 .952 .192 278
90 .950 .187 189 .952 .189 313 .947 .188 384 .952 .188 302

seems that WEP would have slightly smaller coverage probability than the nominal level, but be able to
approximate the nominal level best. It also has the narrowest average expected width. Thus, we may
conclude that WEP is most preferable among the five MLE based confidence intervals. WOP also shows
a reasonable performance, little conservative with slightly wider width, but WEP gives better approxi-
mation of the coverage probability. Efron and Hinkley (1978) claimed that the observed information
is preferable than the expected information in general. However, their claim is not suitable for this
case. In view of Boese et al. (2006), the preferred information seems to be the expected information
for the interval estimation of a proportion. See also Lee (2010).

WEM has the widest average expected width, but has the smallest average coverage probability.
Note that WEM is actually Wald confidence interval constructed by the maximum likelihood estimate
and estimate of its asymptotic variance. It was demonstrated in many sampling designs that the
performance of Wald confidence interval is poor; see for example, Agresti and Coull (1998), Agresti
and Caffo (2000), Brownet al. (2001), Boese et al. (2006), and Lee (2010). The small value of
coverage probability with the wide expected width suggests that the location of interval would not be
proper. A shrinkage estimate such as a Bayesian estimate rather than MLE seems to be desirable for
the interval estimation. WOM and LR are not interesting as well, since they are dominated by WEP in
the approximation and the expected width.

Similar conclusions can be reached from Table 4 which shows the performance of four score
based confidence intervals. The score statistic scaled by the inverse expected information shows
remarkably good performance in the approximation as well as the expected width. Even, it dominates
WEP. However, the observed information seems not to provide a proper scale for the score statistic,
since S OP has significantly smaller coverage probability than the nominal level, but has relative wider
expected width than S EP. Again the expected information is the preferred information. S EM and S OM
works reasonably or even better than MLE based confidence intervals, but they are not good enough
to compete with S EP.
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5. Conclusion

In the nature of double sampling design for binary data, it customarily happens that the error rates
should be the same. For instance, the confidence intervals given in Lee (2010) was obtained under
no restriction on parameters. However, the error rates incurred by fallible device should be the same
in the case-control study of Hildesheim et al. (1991). Thus, the model considered in this paper is
applicable correctly, if we can assume that the false-negative error rate is zero.

The assumption of common error rates can make the model simple by reducing the number of
nuisance parameters, but it does not make the statistical problem more tractable. Rather, the assump-
tion requires more computational expense. However, a methodology to handle the statistical problem
is given in this paper. It was shown by the simulation study that the score statistic scaled by the in-
verse of the expected information has remarkable performance in terms of the approximation and the
expected width. If we have assumed correctly, then S EP can reduce the expected width greatly with
better approximation compared with the corresponding interval under no restrictions on nuisance pa-
rameters.
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