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Classification of the Types of Defects in Steam Generator Tubes
using the Quasi-Newton Method

Joonpyo Lee*, Nam H. Jo' and Youngsu Roh*

Abstract — Multi-layer perceptron neural networks have been constructed to classify four types of de-
fects in steam generator tubes. Three features are extracted from the signals of the eddy current testing
method. These include maximum impedance, phase angle at the point of maximum impedance, and an
angle between the point of maximum impedance and the point of half the maximum impedance. Two
hundred sets of these features are used for training and assessing the networks. Two approaches are in-
volved to train the networks and to classify the defect type. One is the conjugate gradient method and
the other is the Broydon-Fletcher-Goldfarb-Shanno method which is recognized as the most popular
algorithm of quasi-Newton methods. It is found from the computation results that the training time of
the Broydon-Fletcher-Goldfarb-Shanno method is much faster than that of the conjugate gradient me-
thod in most cases. On the other hand, no significant difference of the classification performance be-

tween the two methods is observed.
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1. Introduction

Due to its diagnostic advantages, the eddy current testing
(ECT) method has been extensively used for the periodic
testing of steam generator (SG) tubes to ensure the safe
operation of nuclear power plants[1]-[7]. ECT is one of
popular non-destructive testing methods. The basic prin-
ciple of ECT is based on a phenomenon of electromagnetic
induction. When an alternating current is flowing in the
ECT probe coil which is moving inside the electrically
conductive SG tube, the magnetic field induced by the
probe current interacts with the tube and generates an eddy
current. The eddy current also creates a magnetic field
which has an opposite direction to the primary field of the
coil. One of the most important factors to determine the
characteristics of the eddy current is the tube impedance.
Since the impedance is directly related to the eddy current
path, the impedance can be changed by the deformation of
the path which is typically caused by the tube defect. It is
possible, therefore, to predict the defects by measuring the
characteristics of the current flowing in the probe coil.

There are general difficulties inspecting the tube defect
by the ECT method. For example, the ECT signals may be
distorted at the presence of noise or interfered by unwanted
signals which are generated from the geometry variations
of support structures and probe wobble. For the reliable
inspection of the tube defect, therefore, it is extremely im-
portant to interpret the ECT signals with enhanced accura-
cy and consistency.
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The ECT defect signals may be analyzed by a number of
techniques to obtain information on the defect type and
size. Among those techniques, an artificial neural network
(ANN) is recognized as one of the most popular techniques.
The methods to classify the defect type have been studied
based on the ECT signals by means of a probabilistic neur-
al network[6] and multi-layer perceptron (MLP) neural
networks[7]. In [7], a conjugate gradient back-propagation
(CGBP) algorithm has been used for training a MLP net-
work to classify the defect type. It should be noted that the
classification performance of the back-propagation (BP)
algorithm is dependent on a set of initial guesses of
weights[8]. For a reliable assessment of the classification
performance of the network, therefore, it is necessary to
train the network using sufficiently many sets of initial
guesses.

It is also required to test the network based on various
neuron numbers in the hidden layer because these numbers
may have an effect on the classification performance. Con-
sequently, a huge amount of computation time may be
needed to train the network using the BP algorithm for the
reliable evaluation of the defect classification performance.
As will be discussed later, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method is known as the most popular gra-
dient-based method[9]. In the present article, therefore,
BFGS algorithm is employed for training the neural net-
work to improve the training time of the BP algorithm.

This paper is organized as follows. The next section in-
volves a description of four axisymmetric defects and three
feature vectors for classifying the defect type. In Sec. 3, the
architecture of the MLP network is presented and CGBP
and BFGS back-propagation (BFGSBP) algorithms to train
the neural network are explained. In Sec. 4, the simulation
results are discussed to compare training time and classifi-
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cation performances of the both algorithms. Finally, the
conclusion of the paper is presented in Sec. 5.

2. Axisymmetric Defects and Feature Vectors
2.1 Axisymmetric Defects

As shown in Fig. 1, the following four types of axisym-
metric defects in the SG tube wall are considered in this
paper: (1) the I-type defect in the inner wall (I-In), (2) the
I-type defect in the outer wall (I-Out), (3) the V-type defect
in the inner wall (V-In), (4) the V-type defect in the outer
wall (V-Out). For the classification of these defect types
using an ANN, a sufficient amount of ECT defect signal
samples are required to train a MLP network. However, it
is difficult to obtain such amount of defect signals from
actual SG tubes. It has been revealed in [6] that the defect
signals can be numerically generated based on the finite
element model and these signals are almost identical to the
signals acquired from actual SG tubes. In this paper, the
ECT signals for the axisymmetric defects are also numeri-
cally generated using the same method of [6] and these
signals are used for training the MLP network and assess-
ing the classification performance as well. A total of 50
defect signals are created for each defect type by changing
the defect size (depth and width) in various ways. The
depth and the width are changed within a range of 0.1 ~1.0
mm with a step size of 0.1 mm and a range of 0.2 ~1.0 mm
with a step size of 0.2 mm, respectively.
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Fig. 1. Four axisymmetric defect types.
2.2 Feature Vectors

The types of feature vectors to be extracted from ECT
signals play a crucial role determining the performance to
classify the defect type. In [6], a total of 22 features, such
as maximum resistance, phase angle at the point of maxi-
mum resistance, phase angle at the starting point of the
signal, and so on, have been extracted in the impedance
plane to classify the defect pattern. In [7], a significant
improvement of the classification performance has been
realized using only three features which are different from
those in [6]. In this paper, therefore, these three features are
also employed to classify the defect type. Fig. 2 depicts the
three feature vectors. Here F1, F2, and F3 are defined as
maximum impedance, phase angle at the point of maxi-
mum impedance, and an angle between the point of maxi-
mum impedance and the point of half the maximum im-
pedance, respectively.
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Fig. 2. Feature vectors extracted from the ECT signals in
the impedance plane to classify four defect types.

3. Neural Network

Using the three feature vectors, four independent MLP
neural networks are constructed to classify the four defect
types. Each network consists of a hidden layer, three input
neurons and an output neuron. As an activation function,
the following log-sigmoid function is adopted in the hidden
layer[8]:

1
Plv)= 1+exp(-v) M

In the MLP network for the I-In type defect, a classifier
is trained by setting a target value of I-In defect to 1 and
the target values of other defects to 0. For the classification
of other defects, other classifiers are trained in a similar
way as in the I-In defect classifier. In this paper, the MLP
networks are trained by means of the CGBP algorithm as
well as the BFGSBP algorithm. The simulation results of
both algorithms will be examined in terms of training time
and classification performance. Before proceeding to the
discussion of details regarding the simulation results, a
brief description of CGBP and BFGSBP algorithms will be
presented to understand how the networks are trained by
them.

3.1 Conjugate Gradient Algorithm

The basic BP algorithm adjusts the weights in the steep-
est descent direction (negative of the gradient). This is the
direction in which the performance function is decreasing
most rapidly. It turns out that, although the function de-
creases most rapidly along the negative of the gradient, this
does not necessarily produce the fastest convergence. In
the conjugate gradient algorithm a line search is performed
along conjugate directions, which produces generally faster
convergence than steepest descent directions. The CGBP



668 Classification of the Types of Defects in Steam Generator Tubes using the Quasi-Newton Method

algorithm implemented in the MLP network of this paper is
shown in Fig. 3. In step 1, N and & denote the number of
iteration and the tolerance for stopping criterion.

(Stepl)
Set X, &, N
i=1
(Step 2)
e if i=1
S = Vi (X9
else

_ VEX)TVE(X)
P X )TV (X, )
S, = VE(X,)+ /5,
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by minimizing f (X))

(Step 3)

f(Xin—XD<e

i+

Yes

STOP

Fig. 3. Conjugate Gradient Algorithm.

3.2 BFGSBP Algorithm

Newton’s method locates the minimum of a quadratic
function in one iteration, and usually produces faster con-
vergence than steepest descent[9]. In Newton's method, it
is assumed that the function can be locally approximated as
a quadratic Taylor expansion in the region around the op-
timum. Since Newton's method requires the Hessian matrix
of second derivatives of the function to find the stationary
point, this method is not very effective for functions with
large numbers of variable. In contrast, it is not necessary in
quasi-Newton methods to compute the Hessian matrix at
any stage. The Hessian matrix is approximated by a matrix
A (so-called metric) using only first partial derivatives of
the function. The approach involves starting with an initial
metric matrix and updating and improving it at each itera-
tion. There are two primary methods of this type: Davidon-
Fletcher-Powell (DFP) and BFGS algorithms. The two
algorithms differ in how they handle convergence issue.
That is, the metric matrix in the former converges to the
inverse Hessian matrix but that in the latter converges to
the Hessian matrix. The BFGS method is generally recog-
nized to be superior in most cases[9].

The BFGSBP algorithm to obtain the minimum of an
objective function f(X) consists of three main steps as

shown in Fig. 4. In step 1, A;j denotes an initial metric ma-
trix. From an initial guess of X; and an initial metric A;
chosen in step 1, step 2 and step 3 are repeated until X con-
verges to the target value. In step 2, the search direction S;
at the i-th stage is solved and a line search is performed to
find o; and update X+;. In step 3, the metric A; at the i-th
stage is updated by adding two matrices B and C.

(Step 1)
Set X,, &, N, A,
i=1

v

’—> (Step 2)
AS, =-VE(X,)
Y=VIXD=VEXD X 2 X +as, AX, =as,
;
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VE(X)'S,
A,=A+B+C,i=i+1 (Step 3)
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STOP

Fig. 4. BFGS Algorithm.

4. Computer Simulation

Fig. 5 illustrates the flowchart for computation. First of
all, a total of 200 ECT defect signals are numerically gen-
erated. 200 sets of three feature vectors (F1, F2, F3) are
extracted from these ECT signals and divided into two data
groups. One group includes 100 sets of feature vectors ex-
tracted from the ECT signals of defects whose depths are
0.1, 0.3, 0.5, 0.7, and 0.9 mm. The other group contains the
other 100 sets of feature vectors extracted from the ECT
signals of defects whose depths are of 0.2, 0.4, 0.6, 0.8, and
1.0 mm. The former are the training data to optimize the
weights and biases of the networks. The training data are
also used to measure the training time of the two MLP
classifiers based on CGBP and BFGSBP algorithms. The
latter are the test data to assess the classification perfor-
mance of the two trained classifiers.

200 ECT
defect signals

v

Extraction of
feature vectors
for training and

test data
Train MLP Train MLP
using CGBP using BFGSBP

algorithm and algorithm and
training data Training data

v v

Measure Measure
training time training time

v v

Assess the Assess the
classification classification
performance performance

using test data using test data

Fig. 5. Flowchart for computer simulation.
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The purpose to train a neural network is to find a set of
weight (and bias) values that make the output of the net-
work to match the actual target values as closely as possi-
ble. In this paper, the MLP classifier is trained until the
mean square error (MSE) reaches a tolerance for stopping
criterion. Here MSE is expressed by

T
MSE=—-3 (x =% ) )
i=1

where N is the total number of sample data, X; and X;

are the target value and the MLP output of the i-th data,
respectively. MSE is also employed to compute the classi-
fication performance of the trained classifier. The two al-
gorithms are implemented in a personal computer (core2
duo processor @ 2.33 GHz).

Since the number of neurons in the MLP hidden layer
(which will be denoted by ‘NEU’, henceforth) is one of
crucial factors to determine the classifier performance[8], it
is important to examine the effect of NEU on the network
performance. In this regard, a variety of NEUs (10, 20, 30,
40, 50 and 100) are involved in the computation of the
training time and the classification performance. As a mat-
ter of fact, no significant difference among those NEUs has
been observed in terms of the training time and the classi-
fication performance. To avoid redundant description,
therefore, the computation results for two cases (NEU=30,
100) are presented in the following.

Fig. 6 shows the training time with respect to the defect
type when NEU is 30. Here, dotted and solid lines denote
training time of CGBP and BFGSBP, respectively. As men-
tioned previously, it is required to train the network as
many as possible to reliably evaluate the performance of
the network. In this paper, the networks are trained using
30 sets of initial guesses of weights which are randomly
generated in a range of -0.5 and 0.5. Accordingly, 30 train-
ing time are included in the data line of each defect type.
Each training time is calculated based on Eq. (2). In Fig. 6,
the bar in the middle of the data line represents the mean
value of the 30 training time. As can be seen, the training
time of BFGSBP is faster than that of CGBP. It can be
proved by calculating an average of training time for four
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Fig. 6. Training time of CGBP and BFGSBP with respect
to defect type (NEU=30).

defects that the average training time of BFGSBP is ap-
proximately 2.5 times faster than that of CGBP.

It is also possible to compare the training time of the two
algorithms in terms of the convergence rate (MSE versus
epoch) as shown in Fig. 7. Here the convergence rates are
calculated for only V-Out defect training data that are in
close proximity of the mean values in Fig. 6. It is clear in
Fig. 7 that the convergence rate of BFGSBP is much faster
than that of CGBP.

Once the training process of a classifier is completed,
the test data are used to evaluate the classification perfor-
mance of the trained classifier. The computation results
regarding the classification performances of CGBP and
BFGSBP are given in terms of MSE with respect to the
defect type in Fig. 8. It seems that the MSE and variation
width (length of data line) of CGBP is somewhat better
than those of BFGSBP in the cases of I-out and V-Out de-
fects. However, the difference is negligibly small. That is,
no significant difference exists between classification per-
formances of CGBP and BFGSBP.

Figs. 9 and 10 show the simulation results when NEU is
100. As in the case that NEU is 30, 100 sets of training data
are used for each defect type in Fig. 9. It can be easily vali-
dated in Fig. 9 that average training time of BFGSBP and
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Fig. 7. Convergence rate of CGBP and BFGSBP for the
classification of V-Out defects (NEU=30).
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Fig. 8. Classification performances of CGBP and BFGSBP
with respect to defect type (NEU=30).
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CGBP for all defects are 90.4 and 261.6 sec, respectively.
That is, the average training time of BFGSBP is approx-
imately 2.9 times faster than that of CGBP.

The comparison of classification performances of CGBP
and BFGSBP are given in Fig. 10. As in Fig. 8, it is diffi-
cult to point out the performance difference between the
two algorithms. It may be addressed, therefore, that the
classification performance of BFGSBP is almost identical
to that of CGBP regardless of NEU.

As can be seen in Figs. 6 and 9, training time of the two
algorithms change in a similar manner as NEU is increased
from 30 to 100. This is quite an unexpected result because
the size of the metric matrix A in the BFGSBP algorithm
equals [(n+m+1)NEU +m]x[(n+m+1)NEU + m| where

n and m are the numbers of input and output vectors, re-
spectively[8]. That is, the size of A increases in proportion
to the square of NEU as NEU increases. It should be noted
that the computation of the inverse of A is required to find
the search direction S; in the step 2 in Fig. 4. In other words,
an increase of NEU may give rise to a big increase of com-
putation time of the inverse of A. Consequently, when the
BFGSBP algorithm is employed in a neural network that
has a large number of hidden neurons, the speed to train the
network may become extremely slow compared to the
CGBP algorithm. In order to quantitatively examine the
effect of NEU on the training time, we compute the train-
ing time of the classifiers as various values such as 20, 30,
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Fig. 9. Training time of CGBP and BFGSBP with respect
to defect type (NEU=100).
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Fig. 10. Classification performances of CGBP and
BFGSBP with respect to defect type (NEU=100).

40, 50, 100, 150, and 200 are selected to be NEU. Figure
11 shows an example of the computation results as to how
the training time depends on NEU. Here only V-In defect
classifier is tested to compute the training time. As can be
seen, the average training time of BFGSBP is much better
than that of CGBP when NEU<100. However, such ten-
dency is not sustained at NEU=200. In Fig. 11, average
training time of BFGSBP and CGBP are computed to be
1278.1 and 698.4 sec, respectively. Unlike the case that
NEU<100, the average training time of BFGSBP is much
slower than that of CGBP. Apparently, this change is re-
lated to the dependence of the size of A on NEU as ex-
plained previously.
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Fig. 11. Training time of CGBP and BFGSBP for V-In de-
fect classifier with respect to NEU.
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5. Conclusion

Since it is extremely important to reliably inspect the SG
tube defect, MLP networks have been constructed to accu-
rately classify four axisymmetric defects based on the ECT
signals. The 100 sets of three feature vectors extracted
from the ECT signals have been used to train the MLP
networks. BFGSBP and CGBP algorithms have been em-
ployed in the training process. The other 100 sets of three
feature vectors have been used to test the trained classifiers.
According to the computation results, the BFGSBP algo-
rithm is capable of training the MLP classifier in a high
speed compared to CGBP when NEU<100. Moreover, the
classification performance of BFGSBP is similar to that of
CGBP. Considering that NEU is typically less than 100 for
a neural network to classify the SG tube defect pattern, it
may be addressed that, for the classification of SG tube
defects, the BFGSBP algorithm is a beneficial and effective
optimization method compared to the CGBP algorithm.
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