DOI QR코드

DOI QR Code

Investigation for the Characteristics of Cavitation Modeling for Computational Fluid Dynamics

전산유체역학을 위한 공동모델의 특성 조사

  • Park, Sun-Ho (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Rhee, Shin-Hyung (Department of Naval Architecture and Ocean Engineering, Research Institute of Marine Systems Engineering, Seoul National University)
  • 박선호 (서울대학교 대학원 조선해양공학과) ;
  • 이신형 (서울대학교 조선해양공학과 해양시스템공학연구소)
  • Received : 2010.06.11
  • Accepted : 2010.08.04
  • Published : 2010.10.20

Abstract

Cavitation is one of the most difficult physical phenomena to understand and predict. Many experimental and computational studies have been conducted for better understanding of the phenomenon. Recently, with the rapid development of computing hardware capacity and numerical methods, considerable advancement is observed in prediction of cavitation using computational fluid dynamics. To that end, many cavitation models have been developed and reported. In the present paper, some of the distinguished cavitation models are categorized and reviewed in terms of the computational frame work and formulation of transport equations. Then those characteristics are compared with each other.

Keywords

References

  1. Ahn, B.K. Lee, C.S. Yu, Y.W. & Moon, I.S., 2007. Prediction of the Propeller Face Cavity Inception and Experimental Verification. Journal of the Society of Naval Architects of Korea, 44(5), pp.467-473. https://doi.org/10.3744/SNAK.2007.44.5.467
  2. Ahuja, V. Hosangadi, A. & Arunajatesan, S., 2001. Simulations of Cavitating Flows Using Hybrid Unstructured Meshes. Journal of Fluid Engineering, 253, pp.3685-692. https://doi.org/10.1115/1.1362671
  3. Chahine, G. L., 2004. Nuclei Effects on Cavitation Inception and Noise. Proceedings of 25th Symposium on Naval Hydrodynamics, St. John’s Newfoundland and Labrador, Canada, 8-13 August.
  4. Chen, H.T. & Collins, R., 1971. Shock wave propagation past on ocean surface. Journal of Computational Physics, 7, pp.89-101. https://doi.org/10.1016/0021-9991(71)90051-9
  5. Chen, Y. & Heister, S.D., 1994. A Numerical Treatment for Attached Cavitation. Journal of Fluid Engineering, 190, pp.299-307. https://doi.org/10.1115/1.2910321
  6. Delannoy, Y. & Kueny, J. L., 1990. Two Phase Flow Approach in Unsteady Cavitation Modeling. Cavitation and Multiphase Flow Forum, ASME FED, 98, pp.153-158.
  7. Hohenberg, P.C. & Halperin, B.I., 1977. Theory of Dynamic Critical Phenomena. Reviews of Modern Physics, 49(3), pp. 435-479. https://doi.org/10.1103/RevModPhys.49.435
  8. Kim, Y.G. Lee, J.T. Lee, C.S. & Suh, J.C., 1993. Prediction of Steady Performance of a Propeller by Using a Potential-Based Panel Method. Journal of the Society of Naval Architects of Korea, 30(1), pp.73-86.
  9. Kim, Y.G, Lee, C.S. & Lee, J.T., 1991. A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil. Journal of the Society of Naval Architects of Korea, 28(2), pp.159-173.
  10. Kubota, A. Kato, H. & Yamaguchi, H., 1992. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. Journal of Fluid Mechanics, 240, pp.59-96. https://doi.org/10.1017/S002211209200003X
  11. Kunz, R.F. et al., 1999. Multi-Phase CFD Analysis of Natural and Ventilated Cavitation about Submerged Bodies. Proceeding of 3rd ASME/JSME Joints Fluid Engineering Conference, ASME Paper FEDSM 99-7364.
  12. Merkle, C.L. Feng, J. & Buelow, P.E.O., 1998. Computational Modeling of the Dynamics of Sheet Cavitation. 3rd International Symposium on Cavitation, Grenoble, France.
  13. Roosen, P. Unruh, O. & Behmann, M., 1996. Untersuchung und Modellierung des transienten Verhaltens von Kavitationserscheinungen bei ein-und mehrkomponentigen Kraftstoffen in schnell durchstromten Dusen. Report of the Institute for Technical Thermodynamics, RWTH Aachen (Univ. of Tech.), Germany.
  14. Rouse, H. & McNown, J.S., 1948. Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw, Studies in Engineering. Bulletin 32, State University of Iowa
  15. Senocak, I. & Shyy, W., 2002. A Pressure-Based Method for Turbulent Cavitating Flow Computations. Journal of Computational Physics, 176, pp.363-383. https://doi.org/10.1006/jcph.2002.6992
  16. Shen, Y.J. & Dimotakis P., 1989. The influence of surface cavitation on hydrodynamic forces. Proceedings of 22nd ATTC, St. Johns.
  17. Singhal, A.K. Athavale, M.M. Li, H. & Jiang, Y., 2002. Mathematical Basis and Validation of the Full Cavitation Model. Journal of Fluids Engineering, 124, pp.617-624. https://doi.org/10.1115/1.1486223
  18. Singhal, A.K. Vaidya, N. & Leonard, A.D., 1997. Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change. FEDSM97-3272, 1997 ASME Fluids Engineering Division Summer Meeting, Vancouver, British Columbia, Canada, 22-26 June.
  19. Shin, B.R., Iwata, Y., Ikohagi, T., 2003. Numerical Simulation of Unsteady Cavitating Flows Using a Homogeneous Equilibrium Model. Computational Mechanics, 30, pp. 388-395. https://doi.org/10.1007/s00466-003-0414-7
  20. Waid, R.L., 1957. Water tunnel investigation of two-dimensional cavities. In: Knapp RT, Daily JW, Hammitt FG (eds) Cavitation. McGraw-Hill: New York.
  21. Yuan, W. Sauer, J. & Schnerr, G., 2001. Modeling and computation of unsteady cavitation flows in injection nozzles. Mec. Ind., 2(5), pp.383-394. https://doi.org/10.1016/S1296-2139(01)01120-4
  22. Zwart, P.J. Belamri, T. & Gerber, A. G., 2004. A Two-Phase Model for Predicting Cavitation Dynamics. ICMF 2004, Yokohama, Japan, 30 May-3 June, 2004. pp.152.

Cited by

  1. NUMERICAL ANALYSIS OF SUPER-CAVITATING FLOW AROUND TWO-DIMENSIONAL AND AXISYMMETRIC BODIES vol.16, pp.1, 2011, https://doi.org/10.6112/kscfe.2011.16.1.014
  2. Numerical Investigation of Cavitation Flow Around Hydrofoil and Its Flow Noise vol.26, pp.2, 2016, https://doi.org/10.5050/KSNVE.2016.26.2.141
  3. Numerical analysis of the three-dimensional cloud cavitating flow around a twisted hydrofoil vol.45, pp.1, 2012, https://doi.org/10.1088/0169-5983/45/1/015502