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ERROR ANALYSIS ASSOCIATED WITH
UNIFORM HERMITE INTERPOLATIONS OF

BANDLIMITED FUNCTIONS

Mahmoud H. Annaby and Rashad M. Asharabi

Abstract. We derive estimates for the truncation, amplitude and jitter
type errors associated with Hermite-type interpolations at equidistant
nodes of functions in Paley-Wiener spaces. We give pointwise and uniform
estimates. Some examples and comparisons which indicate that applying
Hermite interpolations would improve the methods that use the classical
sampling theorem are given.

1. Introduction

The classical sampling theorem of Whittaker, Kotel’nikov, and Shannon
(WKS), plays a major role in communication theory as well as in many ap-
plications in approximation theory. The WKS sampling theorem states that
if f(t) is any L2(R)-function whose Fourier transform has a compact support
[−σ, σ], σ > 0, then it can be reconstructed from its values at nπ/σ, n ∈ Z via

(1.1) f(t) =
∞∑

n=−∞
f

(nπ
σ

)
Sn(t), t ∈ R,

where

(1.2) Sn(t) :=





sin(σt− nπ)
(σt− nπ)

, t 6= nπ

σ
,

1, t =
nπ

σ
.

The convergence is uniform and absolute on R. See the interesting surveys
[15, 12, 13] for history, references, generalizations and applications in both
mathematics and signal analysis. The class of all L2(R)-functions whose Fourier
transforms vanish outside [−σ, σ] is known in communication theory as the
class of bandlimited signals. Equivalently, see [7, 26], the class of bandlimited
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functions (signals) is the Paley-Wiener space of entire L2(R)-functions of ex-
ponential type σ. It will be denoted by PW 2

σ . The positive number σ is called
in engineering terminology the band-width. Thus Expansion (1.1) can be ex-
tended for t ∈ C with absolute convergence on C and uniform convergence on
compact sets of the complex plane as well as in the L2(R)-norm. Expansion
is a Lagrange-type interpolation expansion, which has been used extensively
in approximation theory, see e.g. [24, 29, 30]. Several types of errors are con-
nected with the use of (1.1). Frequently, the following three types normally
appear in the use of the sinc-method:

• The truncation error. This error results from the truncating infinite
series (1.1). For a positive integer N, this error is defined to be

(1.3) RN (t) := f(t)−
∑

|n|≤N

f
(nπ
σ

)
Sn(t) =

∑

|n|>N

f
(nπ
σ

)
Sn(t), t ∈ R.

• The amplitude error. This error results from using alternate samples
f̃(nπ/σ) instead of the (unavailable) exact ones f(nπ/σ). The resulting
error will be

(1.4) Ef(t) :=
∞∑

n=−∞

{
f

(nπ
σ

)
− f̃

(nπ
σ

)}
Sn(t), t ∈ R.

• The jitter error. This error arises in case alternate nodes tn, n ∈ Z,
are taken instead of the exact nodes nπ/σ. In such case this error has
the form

(1.5) ηf(t) :=
∞∑

n=−∞

{
f

(nπ
σ

)
− f (tn)

}
Sn(t), t ∈ R.

The occurrence of the three types of errors appears in several practical as well as
approximation problems. In particular the amplitude and jitter errors appear
when the samples or the nodes are not exactly known. But alternate ones can be
obtained. In physics, the measured observations are not exactly the ones that fit
in the construction of the signals, but they are closer. In numerical analysis, to
find numerical approximations of the eigenvalues of boundary value problems,
the exact samples can be computed only when the differential equations can be
solved in closed forms, which rarely happens. Alternatively, approximate values
of the solutions are implemented by using standard numerical methods, like e.g.
Runge-Kutta method. It is also known that any desired accuracy εn, δn could
be achieved, subject to the computational prices. See e.g. [4, 5, 6]. There are
several studies to estimate these types of errors for bandlimited functions under
appropriate conditions. For estimating the truncation error, both pointwise
and uniform bounds are given. Piper [27], gave local pointwise bounds of
order N−1/2 for the truncation error; Yao and Thomas [32]; Piper [27]; Brown
[9]; gave local bound estimates of order N−1 provided that the band-width is
shortened. The mostly used result is that of Jagerman [21], for which higher
order accuracy under the condition that the truncated bandlimited function
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satisfies smoothness conditions, is derived. To the best of our knowledge, the
estimate of Li [23], gave the first uniform estimate. As for the amplitude and
jitter error, Butzer et al. have investigated these errors when the alternate
samples and nodes are close to the actual ones, cf. [11, 14, 15].

This paper is concerned with the error analysis on R associated with Hermite-
type interpolation

(1.6) f(t) =
∞∑

n=−∞

{
f

(nπ
σ

)
S2

n(t) + f ′
(nπ
σ

) sin(σt− nπ)
σ

Sn(t)
}

for bandlimited functions. By a bandlimited function f , we mean an element of
the Paley-Wiener space PW 2

2σ of entire L2(R)-functions of exponential type 2σ.
The uniform convergence of (1.6) has been established in [20]. More general
situations and the absolute convergence are studied by Grozev and Rahman in
[17], where not necessarily uniform nodes are considered. Hermite type sam-
pling formulae could be found also in [19, 22]. In this paper we investigate
truncation, amplitude and jitter type-errors associated with (1.6). The alias-
ing error has been considered by Voss in [31]. For a positive integer N the
truncation error associated with (1.6) is defined to be

(1.7) T (f,N)(t) := |f(t)− fN (t)|, t ∈ R,

where

(1.8) fN (t) :=
∑

|n|≤N

{
f

(nπ
σ

)
S2

n(t) + f ′
(nπ
σ

) sin(σt− nπ)
σ

Sn(t)
}
.

We will derive a pointwise estimate for T (f,N) on intervals of R as well as a
uniform estimate on R giving the Hermite counterpart of the results of Jager-
man [21] and Li [23] established for the classical sampling theorem. As for the
amplitude error, let us take the alternate samples f̃

(
nπ
σ

)
, f̃ ′

(
nπ
σ

)
, n ∈ Z with

εn := f
(

nπ
σ

) − f̃
(

nπ
σ

)
, ε′n := f ′

(
nπ
σ

) − f̃ ′
(

nπ
σ

)
. Assume that there is ε > 0

such that |εn|, |ε′n| ≤ ε, n ∈ Z. The amplitude error for t ∈ R is

A(ε, f)(t) :=
∞∑

n=−∞

{ (
f

(nπ
σ

)
− f̃

(nπ
σ

))
S2

n(t)

+
(
f ′

(nπ
σ

)
− f̃ ′

(nπ
σ

)) sin(σt− nπ)
σ

Sn(t)
}
.

(1.9)

The time-jitter error arises when the sampling nodes nπ/σ, n ∈ Z are re-
placed by closer ones. In other words for δ > 0 and |δn|, |δ′n| ≤ δ, n ∈ Z, the
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time-jitter error, J(δ, f), associated with (1.6) is defined to be

J(δ, f)(t) :=
∞∑

n=−∞

{ (
f

(nπ
σ

)
− f

(nπ
σ

+ δn

))
S2

n(t)

+
(
f ′

(nπ
σ

)
− f ′

(nπ
σ

+ δ′n
)) sin(σt− nπ)

σ
Sn(t)

}
.

(1.10)

The goal of this paper is to study the estimates for the truncation, ampli-
tude and jitter type errors defined above. In the next section we give some
preliminary results which we will use in the sequel. The estimates of trun-
cation, amplitude and jitter errors associated with (1.6) will be established
in Sections 3, 4. The last section contains some numerical comparisons and
prospective studies. Now we state some results taken from [1, 2] which we will
use latter on. First we have the identities [1, pp. 258–259],

(1.11)
∞∑

n=1

2k
n(n+ 2k)

= γ + ψ(2k + 1), k ≥ 0,
j−1∑
n=1

1
n

= γ + ψ(j), j ≥ 1,

(1.12) ψ(2k + 1) = ψ(2k) +
1
2k
, k ≥ 1,

where γ is the Euler-Mascheroni constant

γ := lim
n−→∞

(
n∑

k=1

1
k
− log(n)

)
,

and ψ(t) is the digamma function, i.e., ψ(t) := Γ′(t)
Γ(t) and Γ(t) is the gamma

function. It is proved in [2, p. 374], see also [25], that ψ(t) < log(t)− 1
2t , t > 0.

Thus

(1.13) ψ(t) < log(t), t > 0.

2. Preliminaries

In this section we introduce some auxiliary lemmas which we will use in our
proofs.

Lemma 2.1. Let α > 0 and N ∈ Z+ := {1, 2, . . .}. Then for |t| < Nπ/σ we
have

(2.1)
∑

n>N

1
(σt− nπ)α+1

<
1

απ(Nπ − σt)α
.

Consequently,

(2.2)
∑

n<−N

1
(σt− nπ)α+1

<
1

απ(Nπ + σt)α
, |t| < Nπ/σ.
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Proof. Since for a fixed t ∈ R, the function 1/(uπ − σt) is strictly decreasing
for u > σt/π, then

(2.3)
∑

n>N

1
(σt− nπ)α+1

<

∫ ∞

N

du

(σt− πu)α+1
=

1
απ(Nπ − σt)α

,

which is (2.1). Inequality (2.2) can be deduced from (2.1) since the domain of
t, i.e., |t| < Nπ/σ, is symmetric about t = 0. ¤

Lemma 2.2. Let f(t) ∈ PW 2
σ and tkf(t) ∈ L2(R), k ∈ Z+. Then

(2.4)

( ∑

n>N

∣∣∣f ′
(nπ
σ

)∣∣∣
2
)1/2

≤ ξk,σ(σEk + k Ek−1)
(N + 1)k

,

(2.5)

( ∑

n<−N

∣∣∣f ′
(nπ
σ

)∣∣∣
2
)1/2

≤ ξk,σ(σEk + k Ek−1)
(N + 1)k

,

where

(2.6) Ek :=

√∫ ∞

−∞
|tkf(t)|2 dt, ξk,σ :=

σk+1/2

πk+1
√

1− 4−k
.

Proof. Since f(t) ∈ PW 2
σ , then

(2.7) (tkf(t))′ = tkf ′(t) + k tk−1f(t), k ≥ 1.

Using Minkowski’s and Bernstein’s inequalities [18, p. 49], we obtain
(∫ ∞

−∞

∣∣tkf ′(t)
∣∣2 dt

)1/2

≤
(∫ ∞

−∞

∣∣(tkf(t))′
∣∣2 dt

)1/2

+ k

(∫ ∞

−∞

∣∣tk−1f(t)
∣∣2 dt

)1/2

≤ σ

(∫ ∞

−∞

∣∣tkf(t)
∣∣2 dt

)1/2

+ k

(∫ ∞

−∞

∣∣tk−1f(t)
∣∣2 dt

)1/2

= σEk + k Ek−1.

(2.8)

Hence tkf ′(t) ∈ L2(R). Now we prove that tkf ′(t) ∈ PW 2
σ . Let F denote the

continuous Fourier transform. Then, [16, p. 20],

(2.9) F (
tkf ′(t)

)
(α) = (i)kF (k) (f ′(t)) (α), α ∈ R.

Thus the Fourier transform of tkf ′(t) vanishes outside ] − σ, σ[, i.e., f ′(t) ∈
PW 2

σ . Hence, [18, p. 59],

(2.10)
∫ ∞

−∞
t2k |f ′(t)|2 dt =

π

σ

∞∑

j=−∞

(
j π

σ

)2k ∣∣∣∣f ′
(
j π

σ

)∣∣∣∣
2

.
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Combining (2.8) and (2.10) we obtain

(2.11)
π

σ

∞∑

j=−∞

(
j π

σ

)2k ∣∣∣∣f ′
(
j π

σ

)∣∣∣∣
2

≤ (σEk + k Ek−1)
2
.

Thus for n ∈ Z+

(2.12)
π

σ

2n−1∑

j=n

(
j π

σ

)2k ∣∣∣∣f ′
(
j π

σ

)∣∣∣∣
2

≤ (σEk + k Ek−1)
2
,

and therefore

(2.13)
2n−1∑

j=n

∣∣∣∣f ′
(
j π

σ

)∣∣∣∣
2

≤
(σ
π

)2k+1 (σEk + k Ek−1)
2

n2k
.

Letting n := 2r(N + 1) in (2.13), N, r ∈ Z+, then

(2.14)

∑

j>N

∣∣∣∣f ′
(
j π

σ

)∣∣∣∣
2

=
∞∑

r=0

2r+1(N+1)−1∑

j=2r(N+1)

∣∣∣∣f ′
(
j π

σ

)∣∣∣∣
2

≤
(σ
π

)2k+1 (σEk + k Ek−1)
2

(N + 1)2k

∞∑
r=0

1
4rk

,

which is (2.4). The proof of (2.5) can be achieved similarly. ¤

Remark 2.3. According to a referee’s suggestion there might be another proof
that tkf(t) is of exponential type σ whenever f(t) ∈ PW 2

σ based on the fact
that for any polynomial p(t), p(t)f ′(t) has exponential type σ.

Lemma 2.4. Suppose that f(t) ∈ PW 2
σ satisfies a decay condition of the form

(2.15) |f(t)| ≤ A

|t|α+1
, t 6= 0,

where A > 0 and 0 < α ≤ 1 are constants. Then for N ∈ Z+ we have

(2.16)

(∑

k>N

∣∣∣∣f ′
(
kπ

σ

)∣∣∣∣
2
)1/2

<
M1(ρ(N) + 2)√

N
+
M2(ρ(2N) + 4)

Nα+1/2
,

(2.17)

( ∑

k<−N

∣∣∣∣f ′
(
kπ

σ

)∣∣∣∣
2
)1/2

<
M1(ρ(N) + 2)√

N
+
M2(ρ(2N) + 4)

Nα+1/2
,

where

(2.18) M1 :=
3σ
π

(
|f(0)|+A

(σ
π

)α)
, M2 := A

(σ
π

)α+1

, ρ(t) := γ + log(t).
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Proof. Let f(t) ∈ PW 2
σ . Then

(2.19) f(t) =
∞∑

n=−∞
f

(nπ
σ

)
Sn(t), t ∈ R,

and

(2.20) f ′(t) =
∞∑

n=−∞
f

(nπ
σ

)
S′n(t), t ∈ R.

Setting t = kπ/σ in (2.20), we obtain

(2.21) f ′
(
kπ

σ

)
=

∞∑
n=−∞

f
(nπ
σ

)
S′n

(
kπ

σ

)
.

A simple calculation yields

(2.22) S′n

(
kπ

σ

)
=





σ (−1)k−n

π (k − n)
, n 6= k,

0, n = k.

Let f(t) satisfy the decay condition (2.15). Then for a positive integer k we
have

∣∣∣∣f ′
(
kπ

σ

)∣∣∣∣

(2.23)

≤ σ|f(0)|
kπ

+
(σ
π

)α+1

A

∞∑

n = −∞
0 6= n 6= k

1
|n|α+1|k − n|

=
σ|f(0)|
kπ

+
(σ
π

)α+1

A

(
1

2kα+2
+

k−1∑
n=1

2k
nα+1(k2 − n2)

+
∞∑

n=k+1

2
nα(n2 − k2)

)

<
σ|f(0)|
kπ

+
(σ
π

)α+1

A

(
1

2k2
+

k−1∑
n=1

2k
n(k2 − n2)

+
1
kα

∞∑
n=1

2
n(n+ 2k)

)

=
σ|f(0)|
kπ

+
(σ
π

)α+1 A

k

(
3
2k

+
k−1∑
n=1

4
n
−

2k−1∑
n=1

1
n

+
1
kα

∞∑
n=1

2k
n(n+ 2k)

)
.

Substituting from identities (1.11) into (2.23) yields
∣∣∣∣f ′

(
kπ

σ

)∣∣∣∣ ≤
σ

π

( |f(0)|+ (σ/π)αA(3γ + 4ψ(k)− ψ(2k))
k

)

+
(σ
π

)α+1 A(γ + 3/2 + ψ(2k + 1))
kα+1

.(2.24)
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Use (1.12), (1.13) and (2.24) to get

(2.25)
∣∣∣∣f ′

(
kπ

σ

)∣∣∣∣ ≤
M1ρ(k)

k
+
M2(ρ(2k) + 2)

kα+1
,

where the positive constants M1 and M2 and the function ρ(t) are defined in
(2.18). Using the triangle and the Cauchy-Schwarz inequalities, implies

(∑

k>N

∣∣∣∣f ′
(
kπ

σ

)∣∣∣∣
2
)1/2

≤M1

(∑

k>N

ρ2(k)
k2

)1/2

+
M2

Nα

(∑

k>N

(ρ2(2k) + 2)2

k2

)1/2

≤M1

(∫ ∞

N

ρ2(t)
t2

dt

)1/2

+
M2

Nα

(∫ ∞

N

(ρ2(2t) + 2)2

t2
dt

)1/2

<
M1(ρ2(N) + 2)√

N
+
M2(ρ2(2N) + 4)

Nα+1/2

(2.26)

and this proves (2.16). Using similar arguments, we can prove (2.17). ¤

3. Truncation error

In the following we will derive estimates for T (f,N)(t). The first result is
an analogue of the result of Jagerman [21], and the second is an analogue of
Li’s [23] for the classical sampling theorem.

Theorem 3.1. Let f(t) ∈ PW 2
σ and tkf(t) ∈ L2(R), k,N ∈ Z+. Then, for

t ∈ R, |t| < Nπ/σ, we have

T (f,N)(t) ≤ ξk,σEk | sinσt|2√
3(N + 1)k

(
1

(Nπ − σt)3/2
+

1
(Nπ + σt)3/2

)

+
ξk,σ(σEk + k Ek−1) | sinσt|2

σ(N + 1)k

(
1√

Nπ − σt
+

1√
Nπ + σt

)
,

(3.1)

where the constants Ek and ξk,σ are defined in (2.6).

Proof. Applying the triangle and the Cauchy-Schwarz inequalities to T (f,N)(t)
we obtain

T (f,N)(t) ≤
( ∑

n>N

∣∣∣f
(nπ
σ

)∣∣∣
2
)1/2 ( ∑

n>N

|Sn(t)|4
)1/2

(3.2)

+

( ∑

n<−N

∣∣∣f
(nπ
σ

)∣∣∣
2
)1/2 ( ∑

n<−N

|Sn(t)|4
)1/2
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+
| sinσt|
σ

( ∑

n>N

∣∣∣f ′
(nπ
σ

)∣∣∣
2
)1/2 ( ∑

n>N

|Sn(t)|2
)1/2

+

( ∑

n<−N

∣∣∣f ′
(nπ
σ

)∣∣∣
2
)1/2 ( ∑

n<−N

|Sn(t)|2
)1/2

.

Since f(t) ∈ PW 2
σ and tkf(t) ∈ L2(R) then using Jagerman’s estimations, cf.

[21, p. 716],
(3.3)( ∑

n>N

∣∣∣f
(nπ
σ

)∣∣∣
2
)1/2

≤ ξk,σEk

(N + 1)k
,

( ∑

n<−N

∣∣∣f
(nπ
σ

)∣∣∣
2
)1/2

≤ ξk,σEk

(N + 1)k
,

and (2.4)–(2.5) we obtain for |t| < Nπ/σ

T (f,N)(t)

≤ ξk,σEk | sinσt|2
(N + 1)k

{( ∑

n>N

1
(σt− nπ)4

)1/2

+

( ∑

n<−N

1
(σt− nπ)4

)1/2
}

+
ξk,σ(σEk + k Ek−1) | sinσt|2

σ(N + 1)k

{( ∑

n>N

1
(σt− nπ)2

)1/2

+

( ∑

n<−N

1
(σt− nπ)2

)1/2
}
.

(3.4)

Substituting from (2.1) and (2.2) into (3.4) with α = 3 in the first two sums
and α = 1 in the last two ones, we get (3.1). ¤

Theorem 3.2. Suppose that f(t) ∈ PW 2
σ and satisfies condition (2.15), 0 <

α ≤ 1. Then for t ∈ R and N ∈ Z+, we have the estimate

(3.5) T (f,N)(t) ≤ 2M1(ρ(N) + 2)
σ
√
N

+
2M2(ρ(2N) + σ + 4)

σNα+1/2
.

Moreover if N ≥ 8, N ∈ Z+ and t ∈ R, then we have the refined estimate

(3.6) T (f,N)(t) ≤ eM1ρ(N2) log(N)
σN

+
eM2(ρ(2N2) + σ + 2) log(N)

σNα+1
,

where M1, M2 and ρ(t) are defined in (2.18).

Proof. Applying the Cauchy-Schwarz inequality to (1.7) with p = q = 2 and
using (2.16) and (2.17) we obtain for N ∈ Z+

T (f,N)(t) ≤
∑

|n|>N

∣∣∣f
(nπ
σ

)
S2

n(t)
∣∣∣ +

1
σ

∑

|n|>N

∣∣∣f ′
(nπ
σ

)
Sn(t)

∣∣∣

(3.7)

≤






 ∑

|n|>N

∣∣∣f
(nπ
σ

)∣∣∣
2




1/2

+
1
σ


 ∑

|n|>N

∣∣∣f ′
(nπ
σ

)∣∣∣
2




1/2





 ∑

|n|>N

|Sn(t)|2



1/2
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<
{

2M1(ρ(N) + 2)
σ
√
N

+
2M2(ρ(2N) + σ + 4)

σNα+1/2

} 
 ∑

|n|>N

|Sn(t)|2



1/2

,

where we have used the fact that |Sn(t)| ≤ 1, t ∈ R. Let p, q > 1 such that
1
p + 1

q = 1. Substituting from Splettstößer’s inequality, cf. [28],

(3.8)

(∑

n∈Z
|Sn(t)|q

)1/q

< p, t ∈ R,

in (3.7) with p = q = 2 we obtain (3.5). Now we prove the estimate in (3.6).
From Hölder’s inequality, (3.8) and using the fact |Sn(t)| ≤ 1, t ∈ R, we get

T (f,N)(t) ≤
∑

|n|>N

∣∣∣f
(nπ
σ

)
S2

n(t)
∣∣∣ +

1
σ

∑

|n|>N

∣∣∣f ′
(nπ
σ

)
Sn(t)

∣∣∣

≤






 ∑

|n|>N

∣∣∣f
(nπ
σ

)∣∣∣
p




1/p

+
1
σ


 ∑

|n|>N

∣∣∣f ′
(nπ
σ

)∣∣∣
p




1/p



p.(3.9)

From (2.15) we obtain

(3.10)

( ∑

n>N

∣∣∣f
(nπ
σ

)∣∣∣
p
)1/p

≤M2

(∫ ∞

N

dt

tp(α+1)

)1/p

≤ M2

Nα+1−1/p
.

Applying the Minkowski inequality and (2.25), implies for p ≥ 2

( ∑

n>N

∣∣∣f ′
(nπ
σ

)∣∣∣
p
)1/p

≤M1

(∑

k>N

ρp(k)
kp

)1/p

+
M2

Nα

(∑

k>N

(ρ(2k) + 2)p

kp

)1/p

≤
{
M1γ +

M2(ρ(2) + 2)
Nα

}(∫ ∞

N

dt

tp

)1/p

+
{
M1 +

M2

Nα

}(∫ ∞

N

logp(t)
tp

dt

)1/p

<

{
M1γ +

M2(ρ(2) + 2)
Nα

}
N1/p

N
+

{
M1 +

M2

Nα

}(∫ ∞

N

logp(t)
tp

dt

)1/p

.

(3.11)

Now we estimate the last integral in (3.11). Let n0 := bpc+ 1. Hence
∫ ∞

N

logp(t)
tp

dt =
∫ ∞

log(N)

tpe−(p−1)tdt(3.12)

= N1−p

{
n0−2∑

k=0

logp−k(N)

}
+

∫ ∞

log(N)

tp−bpce−(p−1)tdt
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≤ N1−p

{
n0−2∑

k=0

logp−k(N)

}
+

∫ ∞

log(N)

t e−(p−1)tdt

≤ (p+ 1)N1−p logp(N).

Substituting from (3.12) into (3.11) and noting that the function (1 + t)1/t,
t ≥ 2 is decreasing, we obtain for p ≥ 2

(3.13)

(∑

k>N

∣∣∣∣f ′
(
kπ

σ

)∣∣∣∣
p
)1/p

<
M1ρ(N2)N1/p

N
+
M2(ρ(2N2) + 2)N1/p

Nα+1
.

Combining (3.13), (3.9) and (3.10), yields for p ≥ 2

(3.14) T (f,N)(t) <
{

2M1ρ(N2)N1/p

σN
+

2M2(ρ(2N2) + σ + 2)N1/p

σNα+1

}
p.

In (3.14) choosing N > e2 and p := log(N) completes the proof since N1/p =
e. ¤

4. Amplitude and jitter errors

In this section we study the amplitude and jitter errors associated with the
sampling series of Hermite type (1.6).

Theorem 4.1. Let f(t) ∈ PW 2
σ satisfy the condition (2.15) and

(4.1) |εn| ≤ |f(nπ/σ)|, |ε′n| ≤ |f ′(nπ/σ)|, n ∈ Z.
Then for 0 < ε ≤ min{π/σ, σ/π, 1/√e}, we have

‖A(ε, f)‖∞ ≤ 4e1/4

σ(α+ 1)

{√
3e(1 + σ) + (π/σ)M1ρ(ε−10)

+A(ρ(2ε−10) + σ + 2)
}
ε log(1/ε).

(4.2)

Proof. Let p , q > 1 such that 1
p + 1

q = 1. From Hölder’s inequality and using
(3.8), the amplitude error defined in (1.9) satisfies

|A(ε, f)(t)| ≤
( ∞∑

n=−∞
|Sn(t)|2q

)1/q ( ∞∑
n=−∞

∣∣εn

∣∣p
)1/p

+
1
σ

( ∞∑
n=−∞

|Sn(t)|q
)1/q ( ∞∑

n=−∞

∣∣ε′n
∣∣p

)1/p

<





( ∞∑
n=−∞

∣∣εn

∣∣p
)1/p

+
1
σ

( ∞∑
n=−∞

∣∣ε′n
∣∣p

)1/p


 p, t ∈ R.(4.3)

Now we estimate the infinite sums above. Applying the Minkowski inequality,
we obtain for N ≥ 1

(4.4)

( ∞∑
n=−∞

∣∣εn

∣∣p
)1/p

≤

 ∑

|n|≤N

∣∣εn

∣∣p



1/p

+


 ∑

|n|>N

∣∣εn

∣∣p



1/p

.
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Using (2.15), (4.1) and choosing p ≥ 2, yield

 ∑

|n|>N

|εn|p



1/p

≤

 ∑

|n|>N

∣∣∣f
(nπ
σ

)∣∣∣
p




1/p

≤ M2

Nα+1−1/p
.

Moreover,

(4.5)

(
N∑

n=−N

|εn|p
)1/p

≤ ε(2N + 1)1/p.

Combining (4.4)–(4.5), we obtain for N ≥ 1, p ≥ 2

(4.6)

( ∞∑
n=−∞

∣∣εn

∣∣p
)1/p

< ε(2N + 1)1/p +
M2

Nα+1−1/p
.

Since f(t) satisfies condition (2.15), then from (4.1) and (3.13), we get for
N ≥ 1, p ≥ 2

(4.7)


 ∑

|n|>N

|ε′n|p



1/p

<
M1ρ(N2)N1/p

N
+
M2(ρ(2N2) + 2)N1/p

Nα+1
.

Substituting from (4.7) and (4.6) into (4.3) we end with
(4.8)

|A(ε, f)| <
{
ε(1 + σ)(2N + 1)1/p

σ
+
M1ρ(N2)
σN1−1/p

+
M2(ρ(2N2) + σ + 2)

σNα+1−1/p

}
p.

The parameters N and p can to be chosen suitably to obtain the desired esti-
mate. We distinguish between two cases. First when σ ≥ π we take

(4.9) N :=

⌊
ε−1/(α+1)

(σ
π

) (α+1)p
(α+1)p−1

⌋
, p =

4
α+ 1

log(1/ε).

Since ε ≤ {π/σ, 1/√e}, then σ
π ≤ 1

ε and N ≥ 1. Therefore

(2N + 1)1/p ≤
√

3
(

1
ε

) 3(α+1)p−1
(α+1)p((α+1)p−1)

≤
√

3
(

1
ε

)5/(α+1)p

=
√

3 e5/4,

N
1−(1+α)p

p ≤
(π
σ

)α+1

e1/4ε,

ρ(N2) ≤ γ + 10 log(1/ε).

(4.10)

Substituting from (4.10) into (4.8) and noting that p = 4
α+1 log(1/ε), we obtain

(4.2). If σ < π we choose

(4.11) N :=

⌊
ε−1/(α+1)

(π
σ

) (α+1)p
(α+1)p−1

⌋

and proceed as in the previous case. ¤
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In the previous result, as well as in the next one, we use the technique of
Butzer et al. [10, 14, 15]. Now we study the time-jitter error associated with
(1.6) where the decay condition (2.15) is satisfied.

Theorem 4.2. Let f(t) ∈ PW 2
σ be such that condition (2.15) holds. Then

‖J(δ, f)‖∞ ≤
(√

5e (σ‖f ′‖∞ + ‖f ′′‖∞) + 2σ
√

2A

+
4πe1/4M1ρ(1/δ10)

σ

+ 4A
(
ρ(2/δ10) + 2)

) 4 δ log(1/δ)
σ(α+ 1)

)
,

(4.12)

provided that δ ≤ min {π/σ, σ/π, 1/√e}.

Proof. Let p, q > 1 such that 1
p + 1

q = 1. Applying Hölder’s inequality for
(1.10) and using Splettstößer’s inequality (3.8), we obtain

|J(δ, f)(t)| ≤
( ∞∑

n=−∞

∣∣∣f
(nπ
σ

)
− f

(nπ
σ

+ δn

)∣∣∣
p
)1/p ( ∞∑

n=−∞
|Sn(t)|2q

)1/q

+
1
σ

( ∞∑
n=−∞

∣∣∣f ′
(nπ
σ

)
−f ′

(nπ
σ

+ δn

)∣∣∣
p
)1/p( ∞∑

n=−∞
|Sn(t)|q

)1/q

.(4.13)

Applying the mean value theorem, Minkowski inequality and (2.15) to (4.13)
yield

(4.14)

( ∞∑
n=−∞

∣∣∣f
(nπ
σ

)
− f

(nπ
σ

+ δn

)∣∣∣
p
)1/p

≤
√

5e δ‖f ′‖∞ + 2
√

2Aδ e1/4

for σ ≥ π, cf. [10, 18, pp. 116–117]. Also inequality (4.6) holds for σ < π, see
[3]. Using the mean value theorem, N ≥ 1, we obtain


 ∑

|n|≤N

∣∣∣f ′
(nπ
σ

)
− f ′

(nπ
σ

+ δn

)∣∣∣
p




1/p

=


 ∑

|n|≤N

|f ′′ (tn) δn|p



1/p

≤ δ‖f ′′‖∞ (2N + 1)1/p,

(4.15)
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where tn ∈
[

nπ
σ ,

nπ
σ + δn

]
, |n| ≤ N . The use of the Minkowski inequality, (2.15)

and (3.13) leads to

 ∑

|n|>N

∣∣∣f ′
(nπ
σ

)
− f ′

(nπ
σ

+ δn

)∣∣∣
p




1/p

≤

 ∑

|n|>N

∣∣∣f ′
(nπ
σ

)∣∣∣
p




1/p

+


 ∑

|n|>N

∣∣∣f ′
(nπ
σ

+ δn

)∣∣∣
p




1/p

<
4M1ρ(N2)N1/p

N
+

4M2(ρ(2N2) + 2)N1/p

Nα+1
,

(4.16)

where we have used the same calculations as in the proof of Theorem 3.2 to
estimate the second sum of (4.16). Combining (4.13)–(4.16) and using (3.8) we
arrive at

|J(δ, f)(t)| <
(√

5e δ‖f ′‖∞ + 2
√

2Aδ e1/4 +
δ‖f ′′‖∞ (2N + 1)1/p

σ

+
4M1ρ(N2)
σN1−1/p

+
4M2(ρ(2N2) + 2)

σNα+1−1/p

)
p.

(4.17)

If σ ≥ π we choose

(4.18) N :=

⌊
δ−1/(α+1)

(σ
π

) (α+1)p
(α+1)p−1

⌋
, p =

4
α+ 1

log(1/δ).

Therefore, as in (4.10),

(4.19)

(2N + 1)1/p ≤
√

3 e5/4,

N
1−(1+α)p

p ≤
(π
σ

)α+1

e1/4δ,

ρ(N2) ≤ γ + 10 log(1/δ).

Substituting from (4.19) in (4.17), we obtain (4.12). When σ < π we take

(4.20) N :=

⌊
δ−1/(α+1)

(π
σ

) (α+1)p
(α+1)p−1

⌋
.

This completes the proof. ¤

5. Comparisons and prospectives

In this section we give some examples and comparisons indicating that the
use of Hermite interpolation formula (1.6) in approximation theory may be
better than the use of the classical sampling formula

(5.1) f(t) =
∞∑

n=−∞
f

(nπ
σ

)
Sn(t), t ∈ R, f ∈ PW 2

σ .
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The use of (1.6) makes no restriction on f since f is entire and PW 2
σ ⊆ PW 2

2σ.
We consider in the following two examples two functions and sketch the graph
of each function f and its approximations. We denote by fL,N and fH,N the
classical sampling and the Hermite approximations respectively. We also give
tables illustrating the error for some numerical values, where EL and EH denote
the absolute errors in the use of (1.6) and (5.1) respectively.

Example 5.1. The function

(5.2) f(t) =
−√2π cos(πt)

t
+
√

2 sin(πt)√
π t2

,

is a PW 2
π ⊆ PW 2

2π function. Let fL,7(t) and fH,3(t) denote the truncated series

(5.3) fL, 7(t) =
7∑

n=−7

f (n)
sin(πt− nπ)
(πt− nπ)

,

(5.4) fH,3(t) =
3∑

n=−3

f (n)
(

sin(πt− nπ)
(πt− nπ)

)2

+ f ′ (n)
(sin(πt− nπ))2

π(πt− nπ)
.

Note that in (5.3) we have the 7-th iteration with 15 terms, while in (5.4) we
have the third one with 14 terms. Figures 1, 2 show f and each approximation.

Example 5.2. Let us consider the PW 2
2 -function

(5.5) g(t) =
√

2(cos(2) sin(2t)− t sin(2) cos(2t))√
π(t2 − 1)

.

We also consider the iterations gL,7(t) and gH,3(t) as

(5.6) gL,7(t) =
7∑

n=−7

g
(nπ

2

) sin(2t− nπ)
(2t− nπ)

,

(5.7) gH,3(t) =
3∑

n=−3

g
(nπ

2

) (
sin(2t− nπ)
(2t− nπ)

)2

+ g′
(nπ

2

) (sin(2t− nπ))2

2(2t− nπ)
.

Also Figures 3, 4 illustrate g and its approximations.

tn f(tn) fL,15(tn) fH,7(tn) EL EH

0.6 3.39885486685528 3.3009259560631783 3.3990234538820974 0.0979289 0.000168587
1.2 1.36423685377562 1.4248511452262034 1.3643693050612276 0.06061430 0.000132451
1.8 -1.27136220643049 -1.210595323778491 -1.2711537434789448 0.06076688 0.000208463
2.4 -0.19100424553078 -0.289676574573938 -0.1902235362831473 0.09867233 0.000780709

tn g(tn) gL,15(tn) gH,7(tn) EL EH

0.5 0.6338642152580218 0.6178955646599543 0.6338670177287358 0.01596865 0.00000280
1.5 0.8244188818883641 0.8217378230412181 0.8244554296153525 0.00268109 0.00003655
2.5 -0.0373531457979486 -0.019093862328041 -0.0373310336058788 0.01825928 0.00002211
3.5 -0.1895580610349899 -0.202110823670597 -0.18954728942624 0.01255276 0.00001077
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Figure 1. fL,7(t) and f(t)
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Figure 2. fH,3(t) and f(t)
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Figure 3. gL,7(t) and g(t)
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Figure 4. gH,3(t) and g(t)

The estimates derived in Sections 3, 4 above can be used in numerical ap-
proximation of several mathematical problems. For example it can be used to
find error bounds for the computations of eigenvalues of differential operators
as is done in [4, 5, 6, 8] by the use of (5.1). For a general application of the
method to compute eigenvalues, one has to extend the results to compute er-
ror estimates associated with (1.6) on C and to compute the error estimates
for the derivative of (1.6) too. Moreover, we may use higher order Hermite
interpolation of the type, cf. [20],

(5.8) f(t) =
∞∑

n=−∞

r∑

i=0

f (i)
(nπ
σ

)
Ψr,n,i(t),

where

(5.9) Ψr,n,i(t) :=
i−1∑

j=0

Gr+1(t)
(t− nπ

σ )i!(r − i− j)!

{(
(t− nπ

σ )
G(t)

)r+1
}(r−i−j) ∣∣∣∣

nπ/σ

,

and

(5.10) G(t) = t

∞∏
n=1

(
1−

(
σt

nπ

)2
)

for f ∈ PW 2
(r+1)σ and r is a fixed positive integer. In this situation one should

first obtain error estimates of the type (3.1), (4.1) and (4.12) for (5.8).
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