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HIGHER WEIGHTS AND GENERALIZED MDS CODES

STEVEN T. DOUGHERTY AND SUNGHYU HAN

ABSTRACT. We study codes meeting a generalized version of the Single-
ton bound for higher weights. We show that some of the higher weight
enumerators of these codes are uniquely determined. We give the higher
weight enumerators for MDS codes, the Simplex codes, the Hamming
codes, the first order Reed-Muller codes and their dual codes. For the
putative [72, 36, 16] code we find the i-th higher weight enumerators for
i = 12 to 36. Additionally, we give a version of the generalized Singleton
bound for non-linear codes.

1. Introduction

Maximum Distance Separable (MDS) codes are an important class of codes.
They are significant since they are optimal codes for their length and dimension
but also because of their relation to various combinatorial structures, see [11]
for a complete description. In this paper, we study a generalization of MDS
codes, namely those codes meeting a generalized Singleton bound for higher
weights. We shall define higher weights and then describe some basic results
of generalized MDS codes which we will generalize. We also give the higher
weight enumerators for the Simplex codes, the Hamming codes, the first order
Reed-Muller codes and their dual codes. We give a version of the generalized
Singleton bound for non-linear codes. We use these results to find a significant
number of the higher weight enumerators for the putative [72,36,16] Type II
code. We find the i-th higher weight enumerators for i = 12 to 34 as well
using the techniques of the paper. We also use the techniques of the paper to
determine some previously unknown higher weight enumerators of the codes
associated with the projective plane of order 5.

We begin with some basic definitions from coding theory. For any undefined
terms from coding theory see [11] or [18].

A code C of length n over [F, is a subset of ]FZ, and if it is a vector space,
then we say it is a linear code. We attach the standard inner product to the
ambient space FZ, that is [v,w] = > v;w;, and define C+ = {v | [v,w] =0
for all w € C}. If C = C*, then C is said to be a self-dual code. A Type II
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code is a binary self-dual code where all weights in the code are a multiple of
4. A Type I code is a binary self-dual code that is not Type II. For a Type I
code, let Cy be the codimension 1 subcode of doubly-even vectors. Then the
shadow code S = Cg- — C. The Hamming weight of a vector is the number of
non-zero coordinates of the vector.

1.1. Higher weights

We describe higher weights which are generalizations of Hamming weights.
These were introduced by Wei in [19]. Throughout we use the notation in [17].
Let C be a code and let D C IFZ be a linear subcode of C. We define

|ID| = [Supp(D)],
where
Supp(D) ={i | Ive D, v; # 0}.
We define the r-minimum weight for a linear code C' as
d, = d,(C) =min{||D|| | D € C, dim(D) =r}.

Then dy(C) is the minimum Hamming weight.
The weight spectrum is generalized to the higher weight spectrum as follows:

Af = Aj(C)=[{D c C | dim(D) =r, [|D|| =1}
Weight enumerators are generalized to the following;:
W' (Ciy) = W'(C) = _Afy'".

For each r < dim(C) there is a weight enumerator. The weight enumera-
tor W(C;y) is not the Hamming weight enumerator Ho(y) = > ayy* where
there are «; vectors of Hamming weight 7 in C. Rather we have W1 (C;y) =
ﬁ(Hc(y) — 1) since each multiple of a vector has the same support and the
zero vector does not generate a subcode of dimension 1.

As noted, for example in [16], simply because two codes have identical Ham-
ming weight enumerators, this does not imply that the codes have identical
W7(C;y) weight enumerators for all r. For example, consider two [16, 8, 4] bi-
nary extremal self-dual codes d{ and e2. Both have the same Hamming weight
enumerator (1 + 14y* + 3®)2, but from [5, Table 3], ds of d{; is 8 and d3 of €2
is 7, so their higher weight enumerators are not the same.

MacWilliams identities exist for these weights (see [12] or [17]). They are:

S S

W) S W(C ) = A+ (0~ Dy)" (sl (Q 1+1_y> ’

r=0 r=0 (qs - 1>y

where the code has dimension & in IFZ, and [s], = H;;é(qs — ¢%). To find

W#(C+;5) one must use W (C;y) for all r, with 0 < < 5. We shall drop the
y from the notation when it is not necessary.
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1.2. MDS codes

There are various proofs of the Singleton bound. It can be proven both
combinatorially and algebraically. We describe the algebraic proof whose tech-
niques we shall use in the paper. This proof comes from Proposition 5.4 in [18].
Namely, take a generator matrix G = (I A) for a code equivalent to C, where
I is the k x k identity matrix. The minimum weight d is less than or equal to
the weight of first row of G which is less than or equal to n — k + 1. This gives
the well known bound which we state as a theorem.

Theorem 1.1 (Singleton Bound). If C is a linear [n,k,d] code over 'y, then
(2) d<n-—Fk+1.
This leads naturally to the following definition.

Definition 1. A linear [n,k,d] code over F, with d = n — k + 1 is called a
Maximum Distance Separable (MDS) code.

The combinatorial proof of the Singleton bound in Equation 2 holds for
codes over any alphabet, namely d < n — log,(|C]) + 1, where ¢ is the size
of the alphabet. The algebraic version has been generalized to a variety of
rings, for example codes meeting the generalized algebraic Singleton bound for
linear codes are called MDR codes, see [7] for a description of these codes over
Zj. The most general version is given in [10] and is proven for codes over
quasi-Frobenius rings.

A well known theorem relates MDS codes and their duals. It can be found
in Theorem 2.4.3 in [11] and Theorem 9.2 in [18] for example.

Theorem 1.2. If a linear [n,k,d] code C is MDS, then so is its dual C+.

Later we shall give a proof of this theorem which will follow from results
about higher weights.

The following is given in Theorem 7.4.1 in [11]. Let C be an [n, k, d] MDS
code over ;. The weight distribution of C' is given by 49 = 1, 4; = 0 for
1<i<d, and

®) A= (1) i(—l)ﬂ‘ ({) -

Jj=

for d <1i <mn, where d =n—k+ 1. As a corollary we then have that if C' is an
[n, k,d] MDS code over [, then

(1) Ag=(g—1) (Z)

See page 330 of [13] for a complete description.
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1.3. »-MDS codes

In this section we shall define codes meeting a generalized Singleton bound
for higher weights. We shall describe some results that we will use throughout
the paper. We begin with a result that will be used to give a generalized
Singleton bound. The following result can be found in [19]. If C is a linear
[n, k, d] code over IF,, then
(5) d=d(C) < da(C) < -+ < di(C) <.

This leads to the following result known as the generalized Singleton bound.
Namely, if C is a linear [n, k, d] code over [F,, then
(6) d-<n—k+r

for 1 <r < k. The proof can be found in Theorem 7.10.6 in [11].
As before this bound leads naturally to the following definition [17], [19].

Definition 2. A linear [n, k,d] code over F, with d,.(C) = n — k + r is called
an r-th maximum distance separable (r-MDS) code.

By this definition an MDS code is a 1-MDS code.

The following result is Theorem 7.10.7 in [11] and the proof follows from
the proof of Equation 6. Namely, if C'is an MDS code over [F, then C is an
r-MDS code for all 1 < r < k. Additionally, we have the following result which
is Corollary 3.2 in [17]. It follows from the proof of Equation 6. Namely, if C
is an r-MDS code over Fq, then C is an r1-MDS code for all r < ry < k.

This leads to the following definition.

Definition 3. If C is not an (r — 1)-MDS code but it is an »-MDS code over
[F,, then C is called a proper r-MDS (P,-MDS) code.

By this definition a non-trivial MDS code is a P;-MDS code.

Example 1. Let C be the [7,4,3] binary Hamming code. Then C*t is the
[7,3,4] binary Simplex code. We can easily calculate the following:

dl(C) = 3,d2(C) = 5,d3(0) = 67d4(0) =T
di(CF) = 4,dy(CF) = 6,d3(CH) =7
This gives that both C and C* are P,-MDS codes.

The following can be found in [19]. Namely, let C be an [n, k] code over .
Then

(1) {d,(O)1<r<k}={1,2,....n}\{n+1-d.(CH) |1 <r<n-—Ek}
2. r-MDS codes

We shall now investigate the properties of P,.-MDS codes. Using Equation 7,
we have the following (Note: Similar statements to Theorem 2.1 are in Corollary
4.1 in [17]).
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Theorem 2.1. Let C be an [n,k,d] code and let C+ be an [n,n — k,d*] code.
(1) If d+ =1, then C is not a P.-MDS code for any 1 <r < k.
(2) If dt > 1, then C is a Py_q1 1o-MDS code.

Proof. Suppose d+ = 1. Since 1 € {d.(Ct) | 1 < r < n — k}, we have
n & {d.(C) | 1 <r < k}. Therefore C is not a P,-MDS code and C is not a
P,-MDS code for any 1 < r < k. Suppose d- > 1. By the Singleton bound,
d+ < k +1. Then we have that 1 < k —d* +2 < k. Since 1,2,...,d*+ —1
Z{d.(CH)|1<r<n—k},wehaven—dt+2,n—d++3,...,n€{d.(C)|1<
r < k}. Then since d* € {d.(C*+) | 1 < r < n—k}, we have n — dt + 1
¢ {d.(C) | 1 < r < k}. Therefore, we have dj_41,; < n —dt + 1 and
dp_qi 49 =n —d*+ +2. We conclude that C is a Pj,_g41,5-MDS code. O

Corollary 2.2. IfC is an [n, 5, d] self-dual code over F,, thenCisa Pn_gy2-
MDS code.

Proof. Tt follows from Theorem 2.1 noting that d = d*+ and k =n — k. O

While non-trivial binary MDS codes do not exist, by the previous corollary
it is easy to see that non-trivial binary r-MDS codes are easily found.
Using Theorem 2.1, we can reprove Theorem 1.2.

Corollary 2.3. If a linear [n,k,d] code C is MDS, then so is its dual C*+.

Proof. Since C is a P-MDS code, k — d*+ +2 = 1, and it follows that d+ =
k+1. O

Example 2. Let H,, be the [(¢" —1)/(¢—1),(¢" —1)/(¢ — 1) —r, 3] Hamming
code over [F,. Then its dual S,, is the [(¢" — 1)/(¢ — 1),7,¢"~'] Simplex
code. By Theorem 2.1, Hy ;- is a Pigr_1)/(g—1)—r—qr—14+2-MDS code and S, ;- is
a P._1-MDS code.

Theorem 2.4. There exist P.-MDS codes for all r > 1.
Proof. The theorem follows from the fact that S, is a P._1-MDS code. O
We shall give a generalization of the result in Equation 3 for P.-MDS codes.

First we need the following notation and the following result. Recall the defi-
nition of the Gaussian binomial:

[ k ] _ (-1 -9 @ -
r (=1 —q) (@ —q")’
which is the number of subspaces of dimension r in a k& dimensional space over

F

q-
The following result is Theorem 2 in [15].

Let C be an [n, k,d] code and let C+ be an [n,n—k,dt] code. If k+1—d+ <
r < k, then

(8)  A[(0)= (nnz) S ey [ b omti ] (2)

J=0
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Furthermore, if we know W1(C%1), then for k +2 — da(C+) <r < k+1—d*,
we have that
(9) AN(C) = Ui (ID) + U= (1),
where U~} (IT) and U*~}~"(I) are given in [15].
Remark 1. In Equation 9, U*=1="(II) and U*~}7"(I) are complex formulas.
In [15], it is remarked that it will be possible to compute A7 (C) for
k+3 —min{ds(Ct),2d*} <7 <k —do(CH) +2
provided W2(C+) is known.

Now we give a generalization of the result in Equation 3 for P.-MDS codes.
For a similar result see Theorem 8.1 in [9)].

Theorem 2.5. Let C be an [n, k] P.-MDS code over ;. Then, forr <i <k,
the higher weight spectrum of W¥(C;y) is determined by the parameters n, k,
and q. In fact, it is given by A;(C) =0 for0<j<d;, and

wer= () S (@) [

g
ford; < j <n, whered; =d;(C)=n—k+i.
Proof. By Theorem 2.1, r = k—d»+2. Now the theorem is an easy consequence
of Equation 8. O

The following corollary is a generalization of Equation 4.

Corollary 2.6. If C is an [n,k] P.-MDS code over F, with d; = n —k +i
(r<i<k), then A = (;)

Proof. 1t follows from Theorem 2.5. (]
Example 3. Using Theorem 2.5, we can calculate all higher weight spectrums

for MDS codes. For example, consider a [6, 4, 3] Reed-Solomon code C over [F.
Then the weight spectrums are given by the following:

wl=1,

W =20y° + 60y" + 162y° + 158y°,

W? = 15y* + 312y° + 2523y/°,

W? = 6y° + 3944°,

W =45,
Example 4. Using Theorem 2.5, we can calculate some higher weight spec-
trums for self—dual codes. For the [24,12,8] Golay Type II code, we can de-
termine W*(C;y) for 6 < ¢ < 12. For the unique [48,24,12] Type II code,

we can determine W¥(C;y) for 14 < i < 24. These weight enumerators were
done in their entirety in [3]. For the putative [72,36,16] Type II code, we can
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determine W*(C;y) for 22 < i < 36. Later we shall find even more of these
weight enumerators.

The higher weight spectrums of the Simplex codes S, , were stated in [12].
In the following we provide an alternate proof.

Theorem 2.7. Recall that S, is the [(¢" —1)/(q — 1),7,q" ] Simplez code.
Then the higher weight spectrums of Sy, are given by the following. For 1 <
1 <7,

J A5(Sqr)
r—1 qi—l r
w1
otherwise 0

Proof. The following simple property of ||D|| is known [17]. If dim D = r, we

have .
IDI| = ———= > IIvll.
qT _qT veD

Note that all nonzero codewords have Hamming weight ¢"~!. Let dim D = i
and D C S, . Then

1

I[D]| = ﬁZHVH
T 49 veD
1 . 1
= — (¢ = 1)¢"™
qz_qz—l ( )
_ r—iqi_l
= 1 0

From Equation 1, if we know W7 (C;y), (0 <r < s), then we can calculate
W*(Ct;y). But there is also an explicit expression for W*(C+;y) in [12,
Theorem 2], namely the following.

Theorem 2.8. For all s > 0 we have

s 1 ((s—i)(s—i—1)/2)—i(s—i)—r(i—r)—ik
s —-id
WH(Chy) = DY (1)
i=0 =0

[s —d]s—i[i — 7]izp

7 n r . 1- Y )
x(1+ (¢" — 1)y)"W (C, e
Using Theorem 2.7 and Theorem 2.8, we calculated the higher weight spec-
trums of S» ; and Hy ; for j = 2,3,4, and S3 ; and Hs ; for j = 2,3 and present
them in Tables 1 to 12 which can be found in [2].
In the following, we give the higher weight spectrums of the first order Reed-
Muller codes and their dual codes. We start with the following notation. For
u,vel,,

[uV v| = [Supp(u) U Supp(v)|, [uAv|= [Supp(u) N Supp(v)|.
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Theorem 2.9. Let R(1,7) be the [2",r +1,2"71] first order Reed-Muller code.
Then the higher weight spectrums of R(1,r) are given by the following. If
1 <3< r, then

J Aj(R(1,7))

= (GANEN
Jms

otherwise 0

Ifi=r+1, then Wi(R(1,r);) = y* .

Proof. If i =1 or i = r + 1, then the theorem is true. Assume that 2 <i <.
Let GG3 be the matrix
0 1 1
G2 = { 101 ]

For r > 3, define G,. inductively by
0---0 ‘

Then G, is a generator matrix for the binary Simplex code Sy, (r > 2) [11,
p. 30]. Define G(1,r) to be the following (r 4+ 1) x 2" matrix:

Then G(1,r) is a generator matrix for R(1,r) [11, p. 36].
We can think of an ¢ dimensional subspace for R(1,r) in three ways.

(1) The ¢ dimensional subspace is generated by the rows of G(1,r) except
the first row. Then every vector in the subspace is of the form (0, a),
where a is a vector in an ¢ dimensional subspace for Sy .. Therefore
the size of the support of the i dimensional subspace is 2" — 2",

(2) First we make an ¢ — 1 dimensional subspace which is generated by the
rows of G(1,r) except the first row. Then by adding the first row, we
make an ¢ dimensional subspace. Therefore, in this case, the weight
spectrum is given by the following:

T or
RSNCs
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(3) The ¢ dimensional subspace is generated by the following vectors:
(617 ap + 511)7 (527 ag + 521)7 ceey (5’” a; + 521)7

where a; is a codeword in Sy, and ¢§; = 0,1 for 1 < j < ¢ (at least
one ¢; is 1) and 1 is the all 1 vector of length 2" — 1. Without loss of
generality, we may assume that the generating vectors can be changed
to the following vectors.

(0,a1),(0,az2),...,(0,a,-1),(1,a; + 1).
Then the size of the support of the ¢ dimensional subspace is
l1+la;vVasV---Va;—1V(a;+1)|
Note that
la; Vags V---Va;_1V(a;+1)]
=lagVayV---Va,_1|+|(a;+1)]—|(a1 VasV---Va,_1)A(a; + 1)

Note that aj,as,...,a;_1 are linearly independent. If a; is a linear
combination of aj,as,...,a;_1, then we can reduce this case to the
above case. We can then assume that aj,as,...,a; are linearly inde-

pendent. Since
|(a1\/a2\/~~\/ai_1)/\ai|
=layVayV---Va;_1|+|a;| —|a;VasV---Vay
— (27 _ 27'—i+1) + 27’—1 _ (27 _ 27'—i)
_ 27'—1 _ 2r—i
we have
[(a; Vag V---Va;_1)A(a; +1)]
= |(a1\/a2\/--~\/ai_1)| —|(a1 \/ag\/---\/ai_l)/\ai|
— (27" _ 2T—i+1) _ (27‘—1 _ 2T—i)
— 27"—1 _ 2T—i.

From the above values, the size of the support of the i dimensional
subspace is

1 4 (27“ _ 27‘72’4»1) _|_ (21” _ 1 _ 27“71) _ (21”71 _ 27“71‘)
= 227"
From the above arguments, we complete the proof. (I

In the Reed-Muller codes, there are the following dual relations [11, Theo-
rem 1.10.1]:

R(r,r) = {O}L,R(r —1,7) = R(0,7)*,R(r — 2,7) = R(1,r)*.

Since we already know WO({0};%) = 1 and W'(R(0,7);y) = > , using Theo-
rem 2.9 and Theorem 2.8, we can easily calculate the higher weight spectrums
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of R(r—2,r), R(r—1,r) and R(r,r) (Note that R(r,r) is the entire space F;r)
We give the computational results for R(1,r) and R(r — 2,7) for r = 2,3,4 in
Tables 13 to 18 which can be found in [2] (Note that R(1,3) is the [8,4,4]
extended Hamming self-dual code).

2.1. Higher weight distributions of codes from projective planes

We can examine some of the higher weight enumerators which were not
found for the projective plane of order 5 in [6]. Let IT be the projective plane
of order n and let Cp(II) be the code from the projective plane of order n.
The Hull of the plane II is defined as Hull,(II) = C,(II) N Cp(I)* and is a
self-orthogonal code.

We know from [6] that Hull,(II) is of codimension 1 in C,(II) and Cp(II) =
(Hull,(I1),1). If p sharply divides n, then Hull,(II) = C,(I)+. Additionally
we know that for 1 < k < dim(C,(II)), we have

A1 (Cp(I1)) > di—1 (Hull (IT)).
For more details, refer to [6].

We shall calculate some of the higher weight distributions of the code and
the Hull of the projective plane of order 5.

We know that C5(I1) is a [31, 16] code over [F5 and that Hulls(II) is a [31, 15]
code over [F's. We use the known weight enumerator W?(Cs(II)) [14] to ob-
tain by Equation 1 the weight enumerator W1 (Hulls(II)). Then we have that
dq (C5(H)) =6 and d; (HUH5(H)) = 10. Let

WZ(Cg,(H)) = ai+8yi+8 + ai+9yi+9 + -+ agly?’l,
WiHuls(I) = bisoy™™ + bip1oy" ™0 + - + a1y,
where 2 <7 < 16.
We apply the MacWilliams relations to
WO (CH(IL), W (C5(ID), ..., W (C5(ID)
and ,
WO (Hulls (1)), W (Hulls (1)), . . ., W*(Hulls (IT))
for 2 < ¢ < 16, sequentially. By a Maple calculation, we determined W#(Cj(II))

for 8 < i < 16 and W¥(Hull5(IT)) for 8 < i < 15. But the others remain
undetermined. The weight enumerators can be found in [1].

Remark 2. Note that C5(II) is a Pg-MDS code and that Hull5(II) is a Pi;-
MDS code. Compared to what follows from Theorem 2.5, we have obtained
additional results for

W (Hulls (IT)), W (Hulls (1)), and W' (Hulls(IT))
by the above calculation.

Remark 3. If we use the fact that do(C5(II)) > 10, then the weight enumerators
Wi(Hull5(IT)) (i > 8) can be calculated using Equation 9.
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3. A non-linear version of the generalized Singleton bound

The Singleton bound applies to either linear or non-linear codes. For non-
linear codes it applies to the distance between vectors rather than the weight of
vectors, where the distance between two vectors is the number of coordinates
in which they differ. Specifically, if d is the minimum distance of a length n
code C (linear or not) over an alphabet of size ¢ with |C| = M, then

M < g4+,
This immediately gives the usual form of the Singleton bound:
log, (M) <n—d+1.

We shall generalize this to higher weights. We begin with a definition.
Let C be a length n code over an alphabet of size q. Let D C C. Note that
we are not assuming that either C' or D is linear. Define

[|1D|| = |{i | there exist v,w € D with v; # w;}|

(cf. This definition is the same as the definition of the support of a non-linear
code given in [17]). That is, it is the number of coordinates where there are
at least two vectors that differ there. If D is linear, then ||D|| is the size of
the support of D since the zero vector is present. Therefore, this definition
coincides with our previous definition for linear codes.

Define

(10) d, = d,(C) = min{||D|| | D C C,¢""" < |D| < ¢"}.
Again, if C and D are linear, then this coincides with the usual definition.

Lemma 3.1. Let C be a length n code over an alphabet of size q with |C| = M
and ¢*=' < M < ¢* for some k. Then

1< dy(C) < da(C) < d3(C) < -+ < di(C) < .

Proof. Let D be a code of size |D| > ¢"~! with ||D|| = d,.. Pick a coordinate i
where there exist v,w € D with v; # w;. Let « be the element that appears
the most in that coordinate. Let D’ = {v | v; = a}. The pigeon hole principle
gives that |D’| > %|D|, with equality when dealing with linear codes. Remove
elements of D’ to form D" so that ¢"~2 < |D"| < ¢"~L. Then ||D"|| < d,., since
the number of coordinates in D" where there are vectors that differ is strictly
less than that of D. This gives that d,. > d,_;. O

Theorem 3.2. Let C be a length n code over an alphabet of size q with |C| = M
and ¢*~1 < M < ¢* for some k. Then for 1 <r <k,

log, (M) <n—d,+r.

Proof. We shall prove the result by induction. Let r = k. Using M < ¢*,
we have log, (M) < k. Then we have that n < n —log,(M) + k and clearly
di < n. Therefore d;, < n — logq(M) + k and the theorem holds for r = k.
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Assume d, <n —log,(M)+r. By Lemma 3.1, d,—1 < d, — 1, which gives that
dr_1 <n— logq(M) + (r — 1). Then we have the result. O

If M = ¢* this gives the usual
k<n-—d,+r.

Rearranging we have
dr-<n—k+r.

Theorem 3.3. Let C be an [n, k| linear code over Fy and E = a+C for some
ac IFZ. Then the value d.(C) as a linear code is equal to the value d.(E) as a
non-linear code.
Proof. Let D' C C with dim(D’) = r and ||D’|| = d,.(C). Let D" = a+ D’.
Note that ||D”|| = ||D’|| and

ID"l€{lIDI| | DS E,q¢"" <[D| < q"}.

This gives that ||D'|| > d.(E) and d,(C) > d,.(F). For the other inequality,
let D' C E with ¢"~! < |D’| < ¢" and ||D'|| = d,.(E). Fix an element v € D'.
Define D" = ({v — w|w € D'}). Note that ||[D”|| = ||D’|| and dim(D") > r.
So, ||D"]| > d,(C) and d,(C) < d,(E). O

Example 5. Let C be a Type I binary self-dual code and S be the shadow
code of C. From Theorem 3.3, the value d,(S) as a non-linear code is equal
to the value d,.(C) as a linear code. Note that this does not imply that the
minimum weight of the shadow and the code is the same but rather that their
minimum distances are the same.

Theorem 3.4. Let C be the (16,256,6) Nordstrom-Robinson code. Then
{d.(C)]1 < r <8} ={6,9,10,12,13,14,15,16}.
Proof. By definition, d; = 6. Note that we can rewrite Equation 10 as the
following:
d, = d.(C) =min{||D|| | D C C,|D| =2""! +1}.

To show dy = 9, let D = {vy,va,vs} C C with ||D|| = d2. By [13, Fig.
2.18], (a1|v1), (az]va), (as|vs) are codewords of the Golay code of length 24,
where

aj,az, a3 € {(0,0,0,0,0,0,0,0),(1,0,0,0,0,0,0,1),(0,1,0,0,0,0,0,1),
(0,0,1,0,0,0,0,1),...,(0,0,0,0,0,0,1,1)}.
We know that for the Golay code dy is 12. Then we have
12 < |{(a1]vi — ag|va,a1|vi — as|vs)||
= [(a1 —ag, a1 —ag)|| + [[{(vi = v2, vi — V)|
< 3+4ds.
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This gives that 9 < dy. By [11, Example 12.2.5], C' is the Gray image of the
Zs-linear code Og, the octacode, with generator matrix:

100 0 3 1 21

c_|0o1 0012301
“l0oo0 103332
00012311

The set of two Gray images of the first and second rows of G and the zero
codeword has support size 9. This gives that dy = 9.

By Magma [4] computation, we confirmed that d3 = 10 and dy = 12. The
remaining parts of the theorem follow from Lemma 3.1. O

Remark 4. By Magma computation, we calculated the following values for the
Nordstrom-Robinson code.
Number of codewords ‘ ‘

2(3[4|5]6|7|8]9
Minimum support size ‘ 6‘

|10 10|10 [11 |11 ]12

3
9

4. Calculation of higher weight distributions for some Type II
self-dual codes

One of the most interesting and difficult open problems in coding theory is
the existence of extremal [24k, 12k, 4k + 4] codes. For k = 1 and k = 2 there
are unique codes. For k = 3 the question remains open. We shall compute
many of the higher weight enumerators for these codes when 1 < k < 3.

In Example 4, we showed that we can calculate some higher weight distri-
butions of the putative [72,36,16] Type II codes using Theorem 2.5. In this
section, we show that we can calculate these higher weight distributions with
MacWilliams identities. In fact, we can calculate much more than Example 4.

We will need the following easy and well known lemma.

Lemma 4.1. Let M be a ¢* x n matriz whose rows are the codewords of an
[n, k] code C over F,. Then a column of M either consists of zeros or contains
every element of Fq an equal number of times.

4.1. The [72,36,16] Type II code
Let C be the [72,36,16] Type II code. We know WY W' and W?2 [5].

Lemma 4.2. Let C be the [72,36,16] Type II code. Then for the weight hier-
archy of C, the following hold:
d1 =16, do =24, 28 <d3 <33, 30 <dys <38, 31 <ds <39,
32 < dg <40, 35 < d; <41, 36 < dg < 42, 38 < dy < 43, 40 < dyo < 44,
A1 < dyy <45, dis = 46, di = 47, dig =48, diss =50+ (0 <i < 6),
donys = 58+ (0 < i < 14).
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Proof. By definition d; = 16 and we have dy = 24 by [5].

Using Lemma 4.1, we can prove that 28 < d3 by the following argument.
Suppose that D is a 3-dimensional subcode with support size 27. Let M be a
8 x 72 matrix whose rows are the codewords of D. By Lemma 4.1, 1 appears
4-27 = 108 times in M; but M has 7 rows of weight at least 16, implying that 1
appears at least 112 times in M, a contradiction. We can apply this argument
to prove 30 < d4. Then we have

28 < d3, 30 < dy.

Using Equation 7, we have the following result. Since 1,2,...,15 ¢ {d,.(C) |
1 <r < 36}, 58,59,...,72 € {d.(Ct) | 1 < r < 36}. Since 16 € {d,.(C) |
1<r<36},57¢{d(CL) | 1<r<36}. Since 17,18,...,23 & {d,(C) | 1
r < 36}, 50,51,...,56 € {d.(C*+) | 1 <r < 36}. Since 24 € {d,(C)|]1 <r
36}, 49 ¢ {d,(C) | 1 < r < 36}. Since 25,26,27 ¢ {d,(C) | 1 < r < 36
46,47,48 € {d,.(C+) | 1 < r < 36}. In conclusion, we have the following.

(11)  {16,24,46,47,48,50,...,56,58,...,72} C {d, | 1 <r < 36},

<
<
}

(12)
{d. | 1<r <36} C ({16,24,46,47,48,50,...,56,58,...,72} U{28,...,45}).

By Equations 11, 12, and 5, the following hold:
doot; =58+ (0 <i<14), dis1; =50+ (0 <i<6),
dig =48, dy3 =47, di2 = 46,

and
{d, | 3<r <11} C {28,...,45}.

By the table in [8], the highest minimum distance of a [34,7] binary linear
code is 15. Therefore 35 < d7;. We can apply similar argument to dg and d1g.
Then we have

35 < dy, 38 <dg, 40 < dyg.

Using the MacWilliams identities, we can check that d3 < 33 as follows. We
know W' and W2 [5]. Let W? = 3272, a;y’. First we have relations among the
a; by applying Equation 1 to WO, W, W2 and W?3. Then we check whether
there is a possible solution for all non-negative a;. In our Maple calculation,
there is a feasible solution for 28 < d3 < 33. But there is no feasible solution
for 34 < ds. This gives that

ds < 33.

This completes the proof of Lemma 4.2. O

Let
W? = agsy®® + azoy™ + -+ + aray™.
Apply the MacWilliams relations to W0, W', W2, W3. We can not determine
all coefficients of W3. In a similar way we can not determine W? for 4 < i < 11.
There remain many undetermined variables in these cases. But we do obtain
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the following: 39 < dy < 43 and 44 < dy; < 45. In other words, by a Maple
calculation we checked that dg9 # 38 and dy1 # 41,42,43. We continue this
process for W12, ..., W36 sequentially and we can determine all the weight
distributions for W#, 12 < i < 36 sequentially. In conclusion, we know all wi
except W? for 3 < i < 11.

The higher weight enumerators for this code can be found at [1].

Remark 5. Equation 9 and Remark 1 indicate that W¥(12 < i) can be cal-
culated since dy = 24, d3 > 28, and we know W? for the Type II [72,36,16]
code.

Open Problem: Determine the remaining higher weight enumerators for the
extremal [72,36,16] Type II code. That is find W for 3 <i < 11.
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