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HIGHER WEIGHTS AND GENERALIZED MDS CODES

Steven T. Dougherty and Sunghyu Han

Abstract. We study codes meeting a generalized version of the Single-
ton bound for higher weights. We show that some of the higher weight
enumerators of these codes are uniquely determined. We give the higher
weight enumerators for MDS codes, the Simplex codes, the Hamming
codes, the first order Reed-Muller codes and their dual codes. For the
putative [72, 36, 16] code we find the i-th higher weight enumerators for
i = 12 to 36. Additionally, we give a version of the generalized Singleton
bound for non-linear codes.

1. Introduction

Maximum Distance Separable (MDS) codes are an important class of codes.
They are significant since they are optimal codes for their length and dimension
but also because of their relation to various combinatorial structures, see [11]
for a complete description. In this paper, we study a generalization of MDS
codes, namely those codes meeting a generalized Singleton bound for higher
weights. We shall define higher weights and then describe some basic results
of generalized MDS codes which we will generalize. We also give the higher
weight enumerators for the Simplex codes, the Hamming codes, the first order
Reed-Muller codes and their dual codes. We give a version of the generalized
Singleton bound for non-linear codes. We use these results to find a significant
number of the higher weight enumerators for the putative [72, 36, 16] Type II
code. We find the i-th higher weight enumerators for i = 12 to 34 as well
using the techniques of the paper. We also use the techniques of the paper to
determine some previously unknown higher weight enumerators of the codes
associated with the projective plane of order 5.

We begin with some basic definitions from coding theory. For any undefined
terms from coding theory see [11] or [18].

A code C of length n over Fq is a subset of Fn
q , and if it is a vector space,

then we say it is a linear code. We attach the standard inner product to the
ambient space Fn

q , that is [v,w] =
∑

viwi, and define C⊥ = {v | [v,w] = 0
for all w ∈ C}. If C = C⊥, then C is said to be a self-dual code. A Type II
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code is a binary self-dual code where all weights in the code are a multiple of
4. A Type I code is a binary self-dual code that is not Type II. For a Type I
code, let C0 be the codimension 1 subcode of doubly-even vectors. Then the
shadow code S = C⊥0 − C. The Hamming weight of a vector is the number of
non-zero coordinates of the vector.

1.1. Higher weights

We describe higher weights which are generalizations of Hamming weights.
These were introduced by Wei in [19]. Throughout we use the notation in [17].

Let C be a code and let D ⊆ Fn
q be a linear subcode of C. We define

||D|| = |Supp(D)|,
where

Supp(D) = {i | ∃v ∈ D, vi 6= 0}.
We define the r-minimum weight for a linear code C as

dr = dr(C) = min{||D|| | D ⊆ C, dim(D) = r}.
Then d1(C) is the minimum Hamming weight.

The weight spectrum is generalized to the higher weight spectrum as follows:

Ar
i = Ar

i (C) = |{D ⊆ C | dim(D) = r, ||D|| = i}|.
Weight enumerators are generalized to the following:

W r(C; y) = W r(C) =
∑

Ar
i y

i.

For each r ≤ dim(C) there is a weight enumerator. The weight enumera-
tor W 1(C; y) is not the Hamming weight enumerator HC(y) =

∑
αiy

i where
there are αi vectors of Hamming weight i in C. Rather we have W 1(C; y) =

1
q−1 (HC(y)− 1) since each multiple of a vector has the same support and the
zero vector does not generate a subcode of dimension 1.

As noted, for example in [16], simply because two codes have identical Ham-
ming weight enumerators, this does not imply that the codes have identical
W r(C; y) weight enumerators for all r. For example, consider two [16, 8, 4] bi-
nary extremal self-dual codes d+

16 and e2
8. Both have the same Hamming weight

enumerator (1 + 14y4 + y8)2, but from [5, Table 3], d3 of d+
16 is 8 and d3 of e2

8

is 7, so their higher weight enumerators are not the same.
MacWilliams identities exist for these weights (see [12] or [17]). They are:

(1)
s∑

r=0

[s]rW r(C⊥; y) = q−sk(1 + (qs − 1)y)n
s∑

r=0

[s]rW r

(
C;

1− y

1 + (qs − 1)y

)
,

where the code has dimension k in Fn
q , and [s]r =

∏r−1
j=0(q

s − qj). To find
W s(C⊥; y) one must use W r(C; y) for all r, with 0 ≤ r ≤ s. We shall drop the
y from the notation when it is not necessary.
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1.2. MDS codes

There are various proofs of the Singleton bound. It can be proven both
combinatorially and algebraically. We describe the algebraic proof whose tech-
niques we shall use in the paper. This proof comes from Proposition 5.4 in [18].
Namely, take a generator matrix G = (I A) for a code equivalent to C, where
I is the k × k identity matrix. The minimum weight d is less than or equal to
the weight of first row of G which is less than or equal to n− k + 1. This gives
the well known bound which we state as a theorem.

Theorem 1.1 (Singleton Bound). If C is a linear [n, k, d] code over Fq, then

(2) d ≤ n− k + 1.

This leads naturally to the following definition.

Definition 1. A linear [n, k, d] code over Fq with d = n − k + 1 is called a
Maximum Distance Separable (MDS) code.

The combinatorial proof of the Singleton bound in Equation 2 holds for
codes over any alphabet, namely d ≤ n − logq(|C|) + 1, where q is the size
of the alphabet. The algebraic version has been generalized to a variety of
rings, for example codes meeting the generalized algebraic Singleton bound for
linear codes are called MDR codes, see [7] for a description of these codes over
Zk. The most general version is given in [10] and is proven for codes over
quasi-Frobenius rings.

A well known theorem relates MDS codes and their duals. It can be found
in Theorem 2.4.3 in [11] and Theorem 9.2 in [18] for example.

Theorem 1.2. If a linear [n, k, d] code C is MDS, then so is its dual C⊥.

Later we shall give a proof of this theorem which will follow from results
about higher weights.

The following is given in Theorem 7.4.1 in [11]. Let C be an [n, k, d] MDS
code over Fq. The weight distribution of C is given by A0 = 1, Ai = 0 for
1 ≤ i < d, and

(3) Ai =
(

n

i

) i−d∑

j=0

(−1)j

(
i

j

)
(qi+1−d−j − 1)

for d ≤ i ≤ n, where d = n− k + 1. As a corollary we then have that if C is an
[n, k, d] MDS code over Fq, then

(4) Ad = (q − 1)
(

n

d

)
.

See page 330 of [13] for a complete description.
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1.3. r-MDS codes

In this section we shall define codes meeting a generalized Singleton bound
for higher weights. We shall describe some results that we will use throughout
the paper. We begin with a result that will be used to give a generalized
Singleton bound. The following result can be found in [19]. If C is a linear
[n, k, d] code over Fq, then

(5) d = d1(C) < d2(C) < · · · < dk(C) ≤ n.

This leads to the following result known as the generalized Singleton bound.
Namely, if C is a linear [n, k, d] code over Fq, then

(6) dr ≤ n− k + r

for 1 ≤ r ≤ k. The proof can be found in Theorem 7.10.6 in [11].
As before this bound leads naturally to the following definition [17], [19].

Definition 2. A linear [n, k, d] code over Fq with dr(C) = n− k + r is called
an r-th maximum distance separable (r-MDS) code.

By this definition an MDS code is a 1-MDS code.
The following result is Theorem 7.10.7 in [11] and the proof follows from

the proof of Equation 6. Namely, if C is an MDS code over Fq, then C is an
r-MDS code for all 1 ≤ r ≤ k. Additionally, we have the following result which
is Corollary 3.2 in [17]. It follows from the proof of Equation 6. Namely, if C
is an r-MDS code over Fq, then C is an r1-MDS code for all r ≤ r1 ≤ k.

This leads to the following definition.

Definition 3. If C is not an (r − 1)-MDS code but it is an r-MDS code over
Fq, then C is called a proper r-MDS (Pr-MDS) code.

By this definition a non-trivial MDS code is a P1-MDS code.

Example 1. Let C be the [7, 4, 3] binary Hamming code. Then C⊥ is the
[7, 3, 4] binary Simplex code. We can easily calculate the following:

d1(C) = 3, d2(C) = 5, d3(C) = 6, d4(C) = 7;

d1(C⊥) = 4, d2(C⊥) = 6, d3(C⊥) = 7.

This gives that both C and C⊥ are P2-MDS codes.

The following can be found in [19]. Namely, let C be an [n, k] code over Fq.
Then

(7) {dr(C)|1 ≤ r ≤ k} = {1, 2, . . . , n}\{n + 1− dr(C⊥) | 1 ≤ r ≤ n− k}.
2. r-MDS codes

We shall now investigate the properties of Pr-MDS codes. Using Equation 7,
we have the following (Note: Similar statements to Theorem 2.1 are in Corollary
4.1 in [17]).
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Theorem 2.1. Let C be an [n, k, d] code and let C⊥ be an [n, n− k, d⊥] code.
(1) If d⊥ = 1, then C is not a Pr-MDS code for any 1 ≤ r ≤ k.
(2) If d⊥ > 1, then C is a Pk−d⊥+2-MDS code.

Proof. Suppose d⊥ = 1. Since 1 ∈ {dr(C⊥) | 1 ≤ r ≤ n − k}, we have
n 6∈ {dr(C) | 1 ≤ r ≤ k}. Therefore C is not a Pk-MDS code and C is not a
Pr-MDS code for any 1 ≤ r ≤ k. Suppose d⊥ > 1. By the Singleton bound,
d⊥ ≤ k + 1. Then we have that 1 ≤ k − d⊥ + 2 ≤ k. Since 1, 2, . . . , d⊥ − 1
6∈ {dr(C⊥) | 1 ≤ r ≤ n−k}, we have n−d⊥+2, n−d⊥+3, . . . , n ∈ {dr(C) | 1 ≤
r ≤ k}. Then since d⊥ ∈ {dr(C⊥) | 1 ≤ r ≤ n − k}, we have n − d⊥ + 1
6∈ {dr(C) | 1 ≤ r ≤ k}. Therefore, we have dk−d⊥+1 < n − d⊥ + 1 and
dk−d⊥+2 = n− d⊥ + 2. We conclude that C is a Pk−d⊥+2-MDS code. ¤
Corollary 2.2. If C is an [n, n

2 , d] self-dual code over Fq, then C is a Pn
2−d+2-

MDS code.

Proof. It follows from Theorem 2.1 noting that d = d⊥ and k = n− k. ¤
While non-trivial binary MDS codes do not exist, by the previous corollary

it is easy to see that non-trivial binary r-MDS codes are easily found.
Using Theorem 2.1, we can reprove Theorem 1.2.

Corollary 2.3. If a linear [n, k, d] code C is MDS, then so is its dual C⊥.

Proof. Since C is a P1-MDS code, k − d⊥ + 2 = 1, and it follows that d⊥ =
k + 1. ¤
Example 2. Let Hq,r be the [(qr−1)/(q−1), (qr−1)/(q−1)− r, 3] Hamming
code over Fq. Then its dual Sq,r is the [(qr − 1)/(q − 1), r, qr−1] Simplex
code. By Theorem 2.1, Hq,r is a P(qr−1)/(q−1)−r−qr−1+2-MDS code and Sq,r is
a Pr−1-MDS code.

Theorem 2.4. There exist Pr-MDS codes for all r ≥ 1.

Proof. The theorem follows from the fact that Sq,r is a Pr−1-MDS code. ¤
We shall give a generalization of the result in Equation 3 for Pr-MDS codes.

First we need the following notation and the following result. Recall the defi-
nition of the Gaussian binomial:[

k
r

]
=

(qk − 1)(qk − q) · · · (qk − qr−1)
(qr − 1)(qr − q) · · · (qr − qr−1)

,

which is the number of subspaces of dimension r in a k dimensional space over
Fq.

The following result is Theorem 2 in [15].
Let C be an [n, k, d] code and let C⊥ be an [n, n−k, d⊥] code. If k+1−d⊥ <

r ≤ k, then

(8) Ar
i (C) =

(
n

n− i

) k+i−r−n∑

j=0

(−1)j

[
k − n + i− j

k − r − n + i− j

](
i

j

)
.
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Furthermore, if we know W 1(C⊥), then for k + 2− d2(C⊥) < r ≤ k + 1− d⊥,
we have that

(9) Ar
i (C) = Uk−1−r

n−i (II) + Uk−1−r
n−i (I),

where Uk−1−r
n−i (II) and Uk−1−r

n−i (I) are given in [15].

Remark 1. In Equation 9, Uk−1−r
n−i (II) and Uk−1−r

n−i (I) are complex formulas.
In [15], it is remarked that it will be possible to compute Ar

i (C) for

k + 3−min{d3(C⊥), 2d⊥} < r ≤ k − d2(C⊥) + 2

provided W 2(C⊥) is known.

Now we give a generalization of the result in Equation 3 for Pr-MDS codes.
For a similar result see Theorem 8.1 in [9].

Theorem 2.5. Let C be an [n, k] Pr-MDS code over Fq. Then, for r ≤ i ≤ k,
the higher weight spectrum of W i(C; y) is determined by the parameters n, k,
and q. In fact, it is given by Ai

j(C) = 0 for 0 ≤ j < di, and

Ai
j(C) =

(
n

j

) j−di∑
t=0

(−1)t

(
j

t

) [
j + i− di − t

i

]

for di ≤ j ≤ n, where di = di(C) = n− k + i.

Proof. By Theorem 2.1, r = k−d⊥+2. Now the theorem is an easy consequence
of Equation 8. ¤

The following corollary is a generalization of Equation 4.

Corollary 2.6. If C is an [n, k] Pr-MDS code over Fq with di = n − k + i
(r ≤ i ≤ k), then Ai

di
=

(
n
di

)
.

Proof. It follows from Theorem 2.5. ¤
Example 3. Using Theorem 2.5, we can calculate all higher weight spectrums
for MDS codes. For example, consider a [6, 4, 3] Reed-Solomon code C over F7.
Then the weight spectrums are given by the following:

W 0 = 1,

W 1 = 20y3 + 60y4 + 162y5 + 158y6,

W 2 = 15y4 + 312y5 + 2523y6,

W 3 = 6y5 + 394y6,

W 4 = y6.

Example 4. Using Theorem 2.5, we can calculate some higher weight spec-
trums for self-dual codes. For the [24, 12, 8] Golay Type II code, we can de-
termine W i(C; y) for 6 ≤ i ≤ 12. For the unique [48, 24, 12] Type II code,
we can determine W i(C; y) for 14 ≤ i ≤ 24. These weight enumerators were
done in their entirety in [3]. For the putative [72, 36, 16] Type II code, we can
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determine W i(C; y) for 22 ≤ i ≤ 36. Later we shall find even more of these
weight enumerators.

The higher weight spectrums of the Simplex codes Sq,r were stated in [12].
In the following we provide an alternate proof.

Theorem 2.7. Recall that Sq,r is the [(qr − 1)/(q − 1), r, qr−1] Simplex code.
Then the higher weight spectrums of Sq,r are given by the following. For 1 ≤
i ≤ r,

j Ai
j(Sq,r)

qr−i qi−1
q−1

[
r
i

]

otherwise 0

Proof. The following simple property of ||D|| is known [17]. If dim D = r, we
have

||D|| = 1
qr − qr−1

∑

v∈D

||v||.

Note that all nonzero codewords have Hamming weight qr−1. Let dim D = i
and D ⊆ Sq,r. Then

||D|| =
1

qi − qi−1

∑

v∈D

||v||

=
1

qi − qi−1
· (qi − 1)qr−1

= qr−i q
i − 1
q − 1

. ¤
From Equation 1, if we know W r(C; y), (0 ≤ r ≤ s), then we can calculate

W s(C⊥; y). But there is also an explicit expression for W s(C⊥; y) in [12,
Theorem 2], namely the following.

Theorem 2.8. For all s ≥ 0 we have

W s(C⊥; y) =
s∑

i=0

i∑
r=0

(−1)s−i q
((s−i)(s−i−1)/2)−i(s−i)−r(i−r)−ik

[s− i]s−i[i− r]i−r

×(1 + (qi − 1)y)nW r
(
C;

1− y

1 + (qi − 1)y

)
.

Using Theorem 2.7 and Theorem 2.8, we calculated the higher weight spec-
trums of S2,j and H2,j for j = 2, 3, 4, and S3,j and H3,j for j = 2, 3 and present
them in Tables 1 to 12 which can be found in [2].

In the following, we give the higher weight spectrums of the first order Reed-
Muller codes and their dual codes. We start with the following notation. For
u,v ∈ Fn

q ,

|u ∨ v| = |Supp(u) ∪ Supp(v)|, |u ∧ v| = |Supp(u) ∩ Supp(v)|.
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Theorem 2.9. Let R(1, r) be the [2r, r + 1, 2r−1] first order Reed-Muller code.
Then the higher weight spectrums of R(1, r) are given by the following. If
1 ≤ i ≤ r, then

j Ai
j(R(1, r))

2r − 2r−i

[
r + 1

i

]
−

[
r

i− 1

]

2r

[
r

i− 1

]

otherwise 0

If i = r + 1, then W i(R(1, r); y) = y2r

.

Proof. If i = 1 or i = r + 1, then the theorem is true. Assume that 2 ≤ i ≤ r.
Let G2 be the matrix

G2 =
[

0 1 1
1 0 1

]
.

For r ≥ 3, define Gr inductively by

Gr =




0 · · · 0 1 1 · · · 1
0

Gr−1

... Gr−1

0


 .

Then Gr is a generator matrix for the binary Simplex code S2,r, (r ≥ 2) [11,
p. 30]. Define G(1, r) to be the following (r + 1)× 2r matrix:

G(1, r) =




1 1 · · · 1
0
... Gr

0


 .

Then G(1, r) is a generator matrix for R(1, r) [11, p. 36].
We can think of an i dimensional subspace for R(1, r) in three ways.

(1) The i dimensional subspace is generated by the rows of G(1, r) except
the first row. Then every vector in the subspace is of the form (0,a),
where a is a vector in an i dimensional subspace for S2,r. Therefore
the size of the support of the i dimensional subspace is 2r − 2r−i.

(2) First we make an i− 1 dimensional subspace which is generated by the
rows of G(1, r) except the first row. Then by adding the first row, we
make an i dimensional subspace. Therefore, in this case, the weight
spectrum is given by the following:

[
r

i− 1

]
y2r

.
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(3) The i dimensional subspace is generated by the following vectors:

(δ1,a1 + δ11), (δ2,a2 + δ21), . . . , (δi,ai + δi1),

where aj is a codeword in S2,r and δj = 0, 1 for 1 ≤ j ≤ i (at least
one δj is 1) and 1 is the all 1 vector of length 2r − 1. Without loss of
generality, we may assume that the generating vectors can be changed
to the following vectors.

(0,a1), (0,a2), . . . , (0,ai−1), (1,ai + 1).

Then the size of the support of the i dimensional subspace is

1 + |a1 ∨ a2 ∨ · · · ∨ ai−1 ∨ (ai + 1)|.
Note that

|a1 ∨ a2 ∨ · · · ∨ ai−1 ∨ (ai + 1)|
= |a1 ∨ a2 ∨ · · · ∨ ai−1|+ |(ai + 1)| − |(a1 ∨ a2 ∨ · · · ∨ ai−1) ∧ (ai + 1)|.

Note that a1,a2, . . . ,ai−1 are linearly independent. If ai is a linear
combination of a1,a2, . . . ,ai−1, then we can reduce this case to the
above case. We can then assume that a1,a2, . . . ,ai are linearly inde-
pendent. Since

|(a1 ∨ a2 ∨ · · · ∨ ai−1) ∧ ai|
= |a1 ∨ a2 ∨ · · · ∨ ai−1|+ |ai| − |a1 ∨ a2 ∨ · · · ∨ ai|
= (2r − 2r−i+1) + 2r−1 − (2r − 2r−i)

= 2r−1 − 2r−i,

we have

|(a1 ∨ a2 ∨ · · · ∨ ai−1) ∧ (ai + 1)|
= |(a1 ∨ a2 ∨ · · · ∨ ai−1)| − |(a1 ∨ a2 ∨ · · · ∨ ai−1) ∧ ai|
= (2r − 2r−i+1)− (2r−1 − 2r−i)

= 2r−1 − 2r−i.

From the above values, the size of the support of the i dimensional
subspace is

1 + (2r − 2r−i+1) + (2r − 1− 2r−1)− (2r−1 − 2r−i)

= 2r − 2r−i.

From the above arguments, we complete the proof. ¤
In the Reed-Muller codes, there are the following dual relations [11, Theo-

rem 1.10.1]:

R(r, r) = {0}⊥, R(r − 1, r) = R(0, r)⊥, R(r − 2, r) = R(1, r)⊥.

Since we already know W 0({0}; y) = 1 and W 1(R(0, r); y) = y2r

, using Theo-
rem 2.9 and Theorem 2.8, we can easily calculate the higher weight spectrums
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of R(r−2, r), R(r−1, r) and R(r, r) (Note that R(r, r) is the entire space F2r

2 ).
We give the computational results for R(1, r) and R(r − 2, r) for r = 2, 3, 4 in
Tables 13 to 18 which can be found in [2] (Note that R(1, 3) is the [8, 4, 4]
extended Hamming self-dual code).

2.1. Higher weight distributions of codes from projective planes

We can examine some of the higher weight enumerators which were not
found for the projective plane of order 5 in [6]. Let Π be the projective plane
of order n and let Cp(Π) be the code from the projective plane of order n.
The Hull of the plane Π is defined as Hullp(Π) = Cp(Π) ∩ Cp(Π)⊥ and is a
self-orthogonal code.

We know from [6] that Hullp(Π) is of codimension 1 in Cp(Π) and Cp(Π) =
〈Hullp(Π),1〉. If p sharply divides n, then Hullp(Π) = Cp(Π)⊥. Additionally
we know that for 1 ≤ k ≤ dim(Cp(Π)), we have

dk(Cp(Π)) ≥ dk−1(Hullp(Π)).

For more details, refer to [6].
We shall calculate some of the higher weight distributions of the code and

the Hull of the projective plane of order 5.
We know that C5(Π) is a [31, 16] code over F5 and that Hull5(Π) is a [31, 15]

code over F5. We use the known weight enumerator W 1(C5(Π)) [14] to ob-
tain by Equation 1 the weight enumerator W 1(Hull5(Π)). Then we have that
d1(C5(Π)) = 6 and d1(Hull5(Π)) = 10. Let

W i(C5(Π)) = ai+8y
i+8 + ai+9y

i+9 + · · ·+ a31y
31,

W i(Hull5(Π)) = bi+9y
i+9 + bi+10y

i+10 + · · ·+ b31y
31,

where 2 ≤ i ≤ 16.
We apply the MacWilliams relations to

W 0(C5(Π)),W 1(C5(Π)), . . . ,W i(C5(Π))

and
W 0(Hull5(Π)),W 1(Hull5(Π)), . . . ,W i(Hull5(Π))

for 2 ≤ i ≤ 16, sequentially. By a Maple calculation, we determined W i(C5(Π))
for 8 ≤ i ≤ 16 and W i(Hull5(Π)) for 8 ≤ i ≤ 15. But the others remain
undetermined. The weight enumerators can be found in [1].

Remark 2. Note that C5(Π) is a P8-MDS code and that Hull5(Π) is a P11-
MDS code. Compared to what follows from Theorem 2.5, we have obtained
additional results for

W 8(Hull5(Π)),W 9(Hull5(Π)), and W 10(Hull5(Π))

by the above calculation.

Remark 3. If we use the fact that d2(C5(Π)) ≥ 10, then the weight enumerators
W i(Hull5(Π)) (i ≥ 8) can be calculated using Equation 9.
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3. A non-linear version of the generalized Singleton bound

The Singleton bound applies to either linear or non-linear codes. For non-
linear codes it applies to the distance between vectors rather than the weight of
vectors, where the distance between two vectors is the number of coordinates
in which they differ. Specifically, if d is the minimum distance of a length n
code C (linear or not) over an alphabet of size q with |C| = M , then

M ≤ qn−d+1.

This immediately gives the usual form of the Singleton bound:

logq(M) ≤ n− d + 1.

We shall generalize this to higher weights. We begin with a definition.
Let C be a length n code over an alphabet of size q. Let D ⊆ C. Note that

we are not assuming that either C or D is linear. Define

||D|| = |{i | there exist v, w ∈ D with vi 6= wi}|
(cf. This definition is the same as the definition of the support of a non-linear
code given in [17]). That is, it is the number of coordinates where there are
at least two vectors that differ there. If D is linear, then ||D|| is the size of
the support of D since the zero vector is present. Therefore, this definition
coincides with our previous definition for linear codes.

Define

(10) dr = dr(C) = min{||D|| | D ⊆ C, qr−1 < |D| ≤ qr}.
Again, if C and D are linear, then this coincides with the usual definition.

Lemma 3.1. Let C be a length n code over an alphabet of size q with |C| = M
and qk−1 < M ≤ qk for some k. Then

1 ≤ d1(C) < d2(C) < d3(C) < · · · < dk(C) ≤ n.

Proof. Let D be a code of size |D| > qr−1 with ||D|| = dr. Pick a coordinate i
where there exist v,w ∈ D with vi 6= wi. Let α be the element that appears
the most in that coordinate. Let D′ = {v | vi = α}. The pigeon hole principle
gives that |D′| ≥ 1

q |D|, with equality when dealing with linear codes. Remove
elements of D′ to form D′′ so that qr−2 < |D′′| ≤ qr−1. Then ||D′′|| < dr, since
the number of coordinates in D′′ where there are vectors that differ is strictly
less than that of D. This gives that dr > dr−1. ¤

Theorem 3.2. Let C be a length n code over an alphabet of size q with |C| = M
and qk−1 < M ≤ qk for some k. Then for 1 ≤ r ≤ k,

logq(M) ≤ n− dr + r.

Proof. We shall prove the result by induction. Let r = k. Using M ≤ qk,
we have logq(M) ≤ k. Then we have that n ≤ n − logq(M) + k and clearly
dk ≤ n. Therefore dk ≤ n − logq(M) + k and the theorem holds for r = k.
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Assume dr ≤ n− logq(M) + r. By Lemma 3.1, dr−1 ≤ dr − 1, which gives that
dr−1 ≤ n− logq(M) + (r − 1). Then we have the result. ¤

If M = qk this gives the usual

k ≤ n− dr + r.

Rearranging we have
dr ≤ n− k + r.

Theorem 3.3. Let C be an [n, k] linear code over Fq and E = a+C for some
a ∈ Fn

q . Then the value dr(C) as a linear code is equal to the value dr(E) as a
non-linear code.

Proof. Let D′ ⊆ C with dim(D′) = r and ||D′|| = dr(C). Let D′′ = a + D′.
Note that ||D′′|| = ||D′|| and

||D′′|| ∈ {||D|| | D ⊆ E, qr−1 < |D| ≤ qr}.
This gives that ||D′|| ≥ dr(E) and dr(C) ≥ dr(E). For the other inequality,
let D′ ⊆ E with qr−1 < |D′| ≤ qr and ||D′|| = dr(E). Fix an element v ∈ D′.
Define D′′ = 〈{v −w|w ∈ D′}〉. Note that ||D′′|| = ||D′|| and dim(D′′) ≥ r.
So, ||D′′|| ≥ dr(C) and dr(C) ≤ dr(E). ¤

Example 5. Let C be a Type I binary self-dual code and S be the shadow
code of C. From Theorem 3.3, the value dr(S) as a non-linear code is equal
to the value dr(C) as a linear code. Note that this does not imply that the
minimum weight of the shadow and the code is the same but rather that their
minimum distances are the same.

Theorem 3.4. Let C be the (16, 256, 6) Nordstrom-Robinson code. Then

{dr(C)|1 ≤ r ≤ 8} = {6, 9, 10, 12, 13, 14, 15, 16}.
Proof. By definition, d1 = 6. Note that we can rewrite Equation 10 as the
following:

dr = dr(C) = min{||D|| | D ⊆ C, |D| = 2r−1 + 1}.
To show d2 = 9, let D = {v1,v2,v3} ⊆ C with ||D|| = d2. By [13, Fig.

2.18], (a1|v1), (a2|v2), (a3|v3) are codewords of the Golay code of length 24,
where

a1,a2,a3 ∈ {(0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 1),
(0, 0, 1, 0, 0, 0, 0, 1), . . . , (0, 0, 0, 0, 0, 0, 1, 1)}.

We know that for the Golay code d2 is 12. Then we have

12 ≤ ||〈a1|v1 − a2|v2,a1|v1 − a3|v3〉||
= ||〈a1 − a2,a1 − a3〉||+ ||〈v1 − v2,v1 − v3〉||
≤ 3 + d2.
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This gives that 9 ≤ d2. By [11, Example 12.2.5], C is the Gray image of the
Z4-linear code O8, the octacode, with generator matrix:

G =




1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1


 .

The set of two Gray images of the first and second rows of G and the zero
codeword has support size 9. This gives that d2 = 9.

By Magma [4] computation, we confirmed that d3 = 10 and d4 = 12. The
remaining parts of the theorem follow from Lemma 3.1. ¤

Remark 4. By Magma computation, we calculated the following values for the
Nordstrom-Robinson code.

Number of codewords 2 3 4 5 6 7 8 9
Minimum support size 6 9 10 10 10 11 11 12

4. Calculation of higher weight distributions for some Type II
self-dual codes

One of the most interesting and difficult open problems in coding theory is
the existence of extremal [24k, 12k, 4k + 4] codes. For k = 1 and k = 2 there
are unique codes. For k = 3 the question remains open. We shall compute
many of the higher weight enumerators for these codes when 1 ≤ k ≤ 3.

In Example 4, we showed that we can calculate some higher weight distri-
butions of the putative [72, 36, 16] Type II codes using Theorem 2.5. In this
section, we show that we can calculate these higher weight distributions with
MacWilliams identities. In fact, we can calculate much more than Example 4.

We will need the following easy and well known lemma.

Lemma 4.1. Let M be a qk × n matrix whose rows are the codewords of an
[n, k] code C over Fq. Then a column of M either consists of zeros or contains
every element of Fq an equal number of times.

4.1. The [72, 36, 16] Type II code

Let C be the [72, 36, 16] Type II code. We know W 0, W 1, and W 2 [5].

Lemma 4.2. Let C be the [72, 36, 16] Type II code. Then for the weight hier-
archy of C, the following hold:

d1 = 16, d2 = 24, 28 ≤ d3 ≤ 33, 30 ≤ d4 ≤ 38, 31 ≤ d5 ≤ 39,

32 ≤ d6 ≤ 40, 35 ≤ d7 ≤ 41, 36 ≤ d8 ≤ 42, 38 ≤ d9 ≤ 43, 40 ≤ d10 ≤ 44,

41 ≤ d11 ≤ 45, d12 = 46, d13 = 47, d14 = 48, d15+i = 50 + i (0 ≤ i ≤ 6),

d22+i = 58 + i (0 ≤ i ≤ 14).
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Proof. By definition d1 = 16 and we have d2 = 24 by [5].
Using Lemma 4.1, we can prove that 28 ≤ d3 by the following argument.

Suppose that D is a 3-dimensional subcode with support size 27. Let M be a
8 × 72 matrix whose rows are the codewords of D. By Lemma 4.1, 1 appears
4 ·27 = 108 times in M ; but M has 7 rows of weight at least 16, implying that 1
appears at least 112 times in M , a contradiction. We can apply this argument
to prove 30 ≤ d4. Then we have

28 ≤ d3, 30 ≤ d4.

Using Equation 7, we have the following result. Since 1, 2, . . . , 15 6∈ {dr(C) |
1 ≤ r ≤ 36}, 58, 59, . . . , 72 ∈ {dr(C⊥) | 1 ≤ r ≤ 36}. Since 16 ∈ {dr(C) |
1 ≤ r ≤ 36}, 57 6∈ {dr(C⊥) | 1 ≤ r ≤ 36}. Since 17, 18, . . . , 23 6∈ {dr(C) | 1 ≤
r ≤ 36}, 50, 51, . . . , 56 ∈ {dr(C⊥) | 1 ≤ r ≤ 36}. Since 24 ∈ {dr(C)|1 ≤ r ≤
36}, 49 6∈ {dr(C⊥) | 1 ≤ r ≤ 36}. Since 25, 26, 27 6∈ {dr(C) | 1 ≤ r ≤ 36},
46, 47, 48 ∈ {dr(C⊥) | 1 ≤ r ≤ 36}. In conclusion, we have the following.

{16, 24, 46, 47, 48, 50, . . . , 56, 58, . . . , 72} ⊂ {dr | 1 ≤ r ≤ 36},(11)

{dr | 1 ≤ r ≤ 36} ⊂ ({16, 24, 46, 47, 48, 50, . . . , 56, 58, . . . , 72} ∪ {28, . . . , 45}).
(12)

By Equations 11, 12, and 5, the following hold:

d22+i = 58 + i (0 ≤ i ≤ 14), d15+i = 50 + i (0 ≤ i ≤ 6),
d14 = 48, d13 = 47, d12 = 46,

and
{dr | 3 ≤ r ≤ 11} ⊂ {28, . . . , 45}.

By the table in [8], the highest minimum distance of a [34, 7] binary linear
code is 15. Therefore 35 ≤ d7. We can apply similar argument to d9 and d10.
Then we have

35 ≤ d7, 38 ≤ d9, 40 ≤ d10.

Using the MacWilliams identities, we can check that d3 ≤ 33 as follows. We
know W 1 and W 2 [5]. Let W 3 =

∑72
i=28 aiy

i. First we have relations among the
ai by applying Equation 1 to W 0, W 1, W 2 and W 3. Then we check whether
there is a possible solution for all non-negative ai. In our Maple calculation,
there is a feasible solution for 28 ≤ d3 ≤ 33. But there is no feasible solution
for 34 ≤ d3. This gives that

d3 ≤ 33.

This completes the proof of Lemma 4.2. ¤

Let
W 3 = a28y

28 + a29y
29 + · · ·+ a72y

72.

Apply the MacWilliams relations to W 0, W 1, W 2, W 3. We can not determine
all coefficients of W 3. In a similar way we can not determine W i for 4 ≤ i ≤ 11.
There remain many undetermined variables in these cases. But we do obtain
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the following: 39 ≤ d9 ≤ 43 and 44 ≤ d11 ≤ 45. In other words, by a Maple
calculation we checked that d9 6= 38 and d11 6= 41, 42, 43. We continue this
process for W 12, . . . , W 36 sequentially and we can determine all the weight
distributions for W i, 12 ≤ i ≤ 36 sequentially. In conclusion, we know all W i

except W i for 3 ≤ i ≤ 11.
The higher weight enumerators for this code can be found at [1].

Remark 5. Equation 9 and Remark 1 indicate that W i(12 ≤ i) can be cal-
culated since d2 = 24, d3 ≥ 28, and we know W 2 for the Type II [72, 36, 16]
code.

Open Problem: Determine the remaining higher weight enumerators for the
extremal [72, 36, 16] Type II code. That is find W i for 3 ≤ i ≤ 11.

References

[1] http://kutacc.kut.ac.kr/∼sunghyu/data/hw/HW-P5-48-72.pdf
[2] http://kutacc.kut.ac.kr/∼sunghyu/data/hw/HW-SHRM.pdf
[3] D. Britz, T. Britz, K. Shiromoto, and H. K. Sørensen, The higher weight enumerators

of the doubly-even, self-dual [48, 24, 12] code, IEEE Trans. Inform. Theory 53 (2007),
no. 7, 2567–2571.

[4] J. Cannon and C. Playoust, An Introduction to Magma, University of Sydney, Sydney,
Australia, 1994.

[5] S. T. Dougherty, T. A. Gulliver, and M. Oura, Higher weights and graded rings for
binary self-dual codes, Discrete Appl. Math. 128 (2003), no. 1, 121–143.

[6] S. T. Dougherty and R. Ramadurai, Higher weights of codes from projective planes and
biplanes, Math. J. Okayama Univ. 49 (2007), 149–161.

[7] S. T. Dougherty and K. Shiromoto, MDR codes over Zk, IEEE Trans. Inform. Theory
46 (2000), no. 1, 265–269.

[8] M. Grassl, Bounds on the minimum distance of linear codes, online available at
http://www.codetables.de. Accessed on 2008-03-09.

[9] T. Helleseth, T. Kløve, and J. Mykkeltveit, The weight distribution of irreducible cyclic
codes with block length n1((ql − 1)/N), Discrete Math. 18 (1977), no. 2, 179–211.

[10] H. Horimoto and K. Shiromoto, A Singleton bound for linear codes over quasi-Frobenius
rings, Proceedings of the 13th International Symposium on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, Hawaii (USA), 51–52 (1999).

[11] W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes, Cambridge
University Press, Cambridge, 2003.

[12] T. Kløve, Support weight distribution of linear codes, A collection of contributions in
honour of Jack van Lint. Discrete Math. 106/107 (1992), 311–316.

[13] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes
I, II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co.,
Amsterdam-New York-Oxford, 1977.

[14] G. McGuire and H. N. Ward, The weight enumerator of the code of the projective plane
of order 5, Geom. Dedicata 73 (1998), no. 1, 63–77.

[15] H. G. Schaathun, Duality and support weight distributions, IEEE Trans. Inform. Theory
50 (2004), no. 5, 862–867.

[16] J. Simonis, The effective length of subcodes, Appl. Algebra Engrg. Comm. Comput. 5
(1994), no. 6, 371–377.
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