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SPLITTING TYPE, GLOBAL SECTIONS AND CHERN
CLASSES FOR TORSION FREE SHEAVES ON PN

Cristina Bertone and Margherita Roggero

Abstract. In this paper we compare a torsion free sheaf F on PN and
the free vector bundle ⊕n

i=1OPN (bi) having same rank and splitting type.
We show that the first one has always “less” global sections, while it has
a higher second Chern class. In both cases bounds for the difference are
found in terms of the maximal free subsheaves of F . As a consequence we
obtain a direct, easy and more general proof of the “Horrocks’ splitting
criterion”, also holding for torsion free sheaves, and lower bounds for the
Chern classes ci(F(t)) of twists of F , only depending on some numerical
invariants of F . Especially, we prove for rank n torsion free sheaves on
PN , whose splitting type has no gap (i.e., bi ≥ bi+1 ≥ bi − 1 for every
i = 1, . . . , n− 1), the following formula for the discriminant:

∆(F) := 2nc2 − (n− 1)c21 ≥ − 1

12
n2(n2 − 1).

Finally in the case of rank n reflexive sheaves we obtain polynomial upper
bounds for the absolute value of the higher Chern classes c3(F(t)), . . . ,
cn(F(t)) for the dimension of the cohomology modules HiF(t) and for
the Castelnuovo-Mumford regularity of F ; these polynomial bounds only
depend only on c1(F), c2(F), the splitting type of F and t.

Introduction

The present paper deals with the problem of determining all the possible
values for the Chern classes of a rank n torsion-free sheaf F on a projective
space PN . To this aim we consider in particular totally split bundles which
are in some sense close to F and find relations between the Chern classes of F
and those, very easy to compute, of the split bundles. In the previous paper [2]
we studied maximal free subsheaves of a reflexive sheaf F ; here we are mainly
concerned with the sheaf ⊕n

i=1OPN (bi) (OPN (b) for short), whose restriction
to a general line L is isomorphic to FL.

This method, though rather elementary, is in fact direct and effective and
allows very general results. As an evidence of the efficiency of our method,
we point out for instance the simple, self-included and constructive proof of
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the splitting criterion for torsion free sheaves given in §3 (Theorem 2) which
generalizes “Horrocks’ criterion” for vector bundles:

Theorem A. Let F be a torsion free sheaf on PN , N ≥ 2, H be a hyperplane in
PN and b = [b1, . . . , bn] be an ordered sequence of integers. Then F ' OPN (b)
if and only if FH ' OH(b) and either one of the following conditions holds:

i) N = 2 and H1(F(t)) = 0 for every t ≤ −bn,
ii) N ≥ 3 and H1(F(t)) = 0 for every t¿ 0.

For a different proof of a similar result see [1]. The sequence of integers
b = [b1, . . . , bn] is the so-called splitting type of F , a classical invariant in both
algebraic and differential theory of vector bundles, which is directly connected
to important properties like uniformity and stability (see for instance [12]).
Moreover b determines the first Chern class of F ; it is well known that c1(F)
is simply the sum of the integers bi, that is c1(F) =

∑
bi = c1(OPN (b)). Very

little is known about relations between the splitting type and the other Chern
classes. One could think that no such a relation exists, because the splitting
type can be defined only restricting F to a line, where the higher Chern classes
cs, s ≥ 2, disappear.

However some interesting inequalities can be found in literature for both
vector bundles of any rank on Pn and rank 2 reflexive sheaves on P3 (see [4],
[7] and [13]) that we generalize (Corollary 1, Theorem 3, and Corollary 8):

Theorem B. Let F be a rank n torsion free sheaf on PN . Then
i) h0OPN (b)− h0F ≥ 0,
ii) c2(F) ≥ c2(OPN (b)) =

∑
bibj,

iii) cs(F(t)) ≥ cs(OPN (b)⊗OPN (t)) for every s ≤ n and tÀ 0.

Actually what we prove is something more precise than the simple pos-
itivity of the three differences h0OPN (b) − h0F , c2(F) − c2(OPN (b)) and
cs(F(t))−cs(OPN (b+t)); in fact we obtain lower bounds for them that involve
the maximal free subsheaves of F and of its restriction FH to general linear
subspaces H in PN . Every free subsheaf of F is, in some sense, also a subsheaf
of OPN (b), while the converse can hold only if F itself is totally split (Corollary
2; see also [2]). As a consequence we show that equality can realize in either
one of i), ii), iii) if and only if F ' OPN (b).

It is not difficult to see that for every s ≤ n the difference δs(t) = cs(F(t))−
cs(OPN (b+t)) can be expressed as a polynomial in t and coefficients depending
on the Chern classes c1, . . . , cs, whose degree with respect to t is at most s− 2;
the fact that equality cannot hold in ii) unless F ' OPN (b), allows us to
conclude that for every torsion free sheaf which is not totally split the t-degree
of δs(t) is precisely s− 2; moreover our lower bound for δs(t) is a degree s− 2
polynomial too. An analogous property holds with respect to the difference at
the left hand of i) and to the relative lower bound: they are polynomials of the
same degree N − 2.
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Interesting consequences of the above quoted results are the following lower
bound on the discriminant ∆(F) = 2nc2 − (n − 1)c21 of a rank n torsion free
sheaf F on PN (Theorem 5):

Theorem C. If F is a torsion free sheaf and its splitting type has no gap, that
is, bi ≥ bi+1 ≥ bi − 1 for every i = 1, . . . , n− 1, then 12∆(F) ≥ −n2(n2 − 1).

Moreover ∆(F) ≥ 2n if a plane section of F is semistable and ∆(F) ≥ 3
4n

2

if the plane section is stable.

When n = 2 this formula gives Schwarzenberger inequality for rank 2 semi-
stable vector bundles and, for N = 2 and higher n, it is close to Bogomolov
inequality ∆(F) ≥ 0 for semistable sheaves ([3]), generalized to every N using
semistability results of the restriction to suitable surfaces ([5], [9]).

Finally we generalize to reflexive sheaves the upper-bounds for vector bun-
dles obtained in [4] (see Theorem 3.3 and Theorem 4.2); they concern the
dimension of the cohomology modules HiF , the absolute value of the Chern
classes cs(F) and the regularity of F and they are obtained through polynomial
functions depending on the rank of F , on the dimension of the projective space,
on the first and second Chern classes c1(F) and c2(F) and on the splitting type
b (see Theorem 6), while no such bounding formulas exist for the wider class
of torsion free sheaves.

Theorem D. For any choice of non-negative integers n, N and s, with N ≥ 2
and 3 ≤ s ≤ N , there are suitable polynomial functions Pn,N , Qn,N , Cn,N,s

in the set of variables {c1, c2,b, d, δ2} (or either one of the sets of Lemma 6),
such that for any reflexive sheaf F of rank n on PN we have

i) hiF ≤ Pn,N for all 0 ≤ i ≤ N ;
ii) hiF(k) = h1F(−k) = h0F(−k) = 0 for all k ≥ Qn,N and 1 ≤ i ≤ N ;
iii) the Castelnuovo-Mumford regularity of F is lower than Qn,N and espe-

cially F(k) is generated by global sections for k ≥ Qn,N +N ;
iv) |cs(F)| ≤ Cn,N,s.

In §1 we collect some basic definitions and known results, that we will use
more often in the following. §2, §4 and §6 concern respectively Theorem B i),
ii) and iii) . In §3 we prove Horrocks’ criterion for torsion free sheaves, that
is Theorem A, in §5 the lower bounds for the discriminant that is Theorem C
and in §7 the polynomial upper bounds for cohomology, Castelnuovo-Mumford
regularity and higher Chern classes that is Theorem D. Finally in §8 we exhibit
examples showing the sharpness of the main results of the paper.

1. Generalities

We consider an algebraically closed field k of characteristic 0; PN is the pro-
jective space of dimension N over k. As usual, if F is a coherent sheaf on PN ,
we will denote by hi(F) the dimension of the i-th cohomology module Hi(F)
as a k-vector space and by Hi

∗F the direct sum ⊕n∈ZHiF(n); in particular
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H0
∗OPN = k[X0, . . . , Xn] and, in a natural way, H0

∗F is a H0
∗OPN -module. F̂

will denote the subsheaf of a sheaf F generated by H0F .

1) For every rank n coherent sheaf F on PN , we denote by ci(F) or simply
ci (i = 1, . . . , N) its Chern classes that we think as integers and by Ct(F) =∑N

i=0 ci(F)ti its Chern polynomial. If 0 → F ′ → F → F ′′ → 0 is an exact
sequence, then Ct(F) = Ct(F ′)Ct(F ′′) in Z[t]/(tN+1). Moreover, for every
l ∈ Z, the Chern classes of F(l) are given by:

(1) ci(F(l)) = ci + (n− i+ 1)lci−1 +
(
n− i+ 2

2

)
l2ci−2 + · · ·+

(
n

i

)
li.

The Chern classes of a rank n split bundle ⊕n
i=1OPN (bi) are cl =

∑
bi1bi2 · · · bil

(where the sum is over all i1 < i2 < · · · < il), if l ≤ min{N,n} and cl = 0
otherwise.

The discriminant of the rank n torsion free sheaf F on Pn is ∆(F) = 2nc2−
(n− 1)c1 (for us integer numbers).

If H is a general hyperplane, the torsion free sheaf F and its restriction FH

to H are connected by the standard exact sequence:

(2) 0 → F(−1) → F → FH → 0.

FH is torsion free too and ci(FH) = ci(F) for every i ≤ N − 1.

2) A coherent sheaf F on PN is reflexive if the canonical morphism F →
F∨∨ is an isomorphism, where F∨ is the dual sheaf, that is F∨=Hom(F ,OPN ).
Vector bundles and the dual of any coherent sheaf are reflexive; for every integer
l, OPN (l) is the only rank 1 reflexive sheaf on PN with c1 = l. We refer to
[7] for general facts about reflexives sheaves. Now we only recall that for a
reflexive sheaf F on PN , N ≥ 2, the first cohomology module H1

∗F(t) is a
vector space of finite dimensions because H1F(t) = 0 for t ¿ 0: this can be
deduced for instance from Corollary 1.5 of [7].

3) We will denote by a = [a1, . . . , an] a sequences of integers such that
a1 ≥ · · · ≥ an and use the compact notation OPN (a) for the split bundle
⊕n

i=1OPN (ai); moreover if a′ = [a′1, . . . , a
′
n] is another sequence, we will write

a ≤ a′ if ai ≤ a′i for i = 1, . . . , n and a < a′ if “≤” holds and a 6= a′, that is
ai < a′i at least once. Finally if t ∈ Z, a + t = [a1 + t, . . . , an + t].

4) For a general hyperplane H, the restriction FH of a torsion free (reflexive)
sheaf F is torsion free (reflexive) too and the restriction FL to a general line
L is a free vector bundle. We denote by st(F) the splitting type of F that is
the sequence of integers b = [b1, . . . , bn] (bi ≥ bi+1) such that FL = OL(b) for
a general line L in PN ; recall that c1(F) = b1 + · · · + bn. We say that the
splitting type b has no gap if bi − bi+1 ≤ 1 for every i = 1, . . . , n− 1.

Definition 1. Let H be a coherent sheaf on PN . The rank of H by global
sections gsrk(H) is the maximum m for which there is an injective map φ :
Om

PN → H. The global section type gst(H) is the sequence of integers a =
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[a1, . . . , an] such that gsrk(H(−ai − 1)) < i and gsrk(H(−ai)) ≥ i for every
i = 1, . . . , n.

It is easy to see that ai ≥ 0 if and only if gsrk(F) ≥ i and gst(F(l)) =
[a1 + l, . . . , an + l]. Note that for gst(FL) for a general line L is the splitting
type st(F ).

The following lemma collects some straightforward consequences of the above
definition (for the first one see also [2] Remark 1 and Lemma 5 where this notion
was first introduced).

Lemma 1. Let F be a rank n torsion free sheaf on PN .

(i) If F̂ is the subsheaf of F generated by H0F , then gsrk(F) = gsrk(F̂) =
rk(F̂).

(ii) If a = gst(F) there is an (not unique) injective map: φ : OPN (a) ↪→ F
which is “maximal” among the maps of that type in the following sense:
if α = [α1, . . . , αr] and f : OPN (α) ↪→ F is an injective map, then
r ≤ n and αi ≤ ai for every i = 1, . . . , r.

(iii) If H ∼= Pr is a general linear space in PN , then gst(F) ≤ gst(FH) (as
a sheaf on H) and especially gst(F) ≤ st(F).

2. h0F ≤ h0OPN (b)

It is not difficult to see that every torsion free sheaf F on PN has always
“less” global sections than the split vector bundle OPN (b) having the same
rank and splitting type.

Lemma 2. Let F be a rank n torsion free sheaf on PN . Then
(i) h0F ≤ h0OPN (b),
(ii) hNF ≤ h0OPN (−b−N − 1).

Proof. Both inequalities can be proved by induction on N using the canonical
exact sequence (2). The initial case N = 1 is obvious because F = OPN (b).
Assume N ≥ 2 and the inequalities true on a general hyperplane H. From the
cohomology exact sequence of (2) we obtain for every k:

h0F(k)− h0F(k − 1) ≤ h0FH(k)

≤ h0OH(b + k) = h0OPN (b + k)− h0OPN (b + k − 1).

As h0F(k) = 0 for k ¿ 0, we obtain (i) summing up on k ≤ 0. In the same way
we obtain (ii) summing up on k ≤ 0 the inequalities hNF(k)− hNF(k + 1) ≤
hN−1FH(k + 1) ≤ h0OH(−b − k − N − 1) = h0OPN (−b − k − N − 1) −
h0OPN (−b− k −N − 2) and recalling that hNF(k) = 0 for k À 0. ¤

In order to find a better lower bound for h0OPN (b) − h0F , we take into
consideration the “growth” of the global section type of FH as a function of
the codimension of the general linear space H.
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Lemma 3. Let G be a subsheaf of a torsion-free sheaf E on PN . Assume that
gsrk(G) = r and gsrk(E) = r′. Then h0E ≥ h0G +

∑
r<i≤r′ h

0OPN (αi), where
[α1, . . . , αn] = gst(E).

Proof. Thanks to Lemma 1(i), it is sufficient to show the inequality with respect
to Ĝ and Ê so that gsrk(Ĝ) = rk(Ĝ) = r and gsrk(Ê) = rk(Ê) = r′.

Using Or
PN ↪→ Ĝ, Ĝ ↪→ Ê and ⊕r′

i=1OPN (αi) ↪→ Ê we can define a map

φ : ⊕r′
i=1 OPN (αi)⊕Or

PN → Ê
whose image has rank r′. Now we can choose r′ − r summand ⊕r′−r

j=1 OPN (αj)
in ⊕r′

i=1OPN (αi) such that φ′ : ⊕r′−r
j=1 OPN (αj) ⊕ Or

PN → Ê is injective and
then Im(φ′) has rank r′. Let ψ : ⊕r′−r

j=1 OPN (αj)⊕ Ĝ → Ê be the induced map;
its image, containing Im(φ′), has maximal rank r′ and so its kernel is a rank 0
torsion free sheaf, that is, ψ is injective.

In order to conclude, we only have to observe that [α1, . . . , αr′−r] is an
ordered sublist of [α1, . . . , αr] and then αj ≥ αr+j . ¤

Proposition 1. Let F be a rank n torsion free sheaf on PN and H be a general
hyperplane. If gsrk(F) = r, gst(FH) = [α1, . . . , αn], then

(3) h0F − h0F(−1) ≤ h0FH −
∑

i>r

h0OH(αi).

Proof. Let (H0F)H be the image of the restriction map H0F → H0FH . We
consider the sheaf E = (̂FH) and its subsheaf G generated by (H0F)H . Then
h0E = h0FH and rk(E) = gsrk(E) = gsrk(FH) = r′ ≥ r, so that gst(E) =
[α1, . . . , αr′ ], where αr′ ≥ 0 and αj < 0 if j > r′; moreover rk(G) = gsrk(G) = r

and h0G ≥ h0F − h0F(−1) because G is a subsheaf of the rank r sheaf (F̂)H

and H0G ⊇ (H0F)H .
If we apply Lemma 3 to the inclusion G ↪→ E we get:

h0FH = h0E ≥ h0G +
r′∑

i=r+1

h0OH(αi) ≥ h0F − h0F(−1) +
∑

i>r

h0OH(αi).
¤

Theorem 1. Let F be a rank n torsion free sheaf on PN (N ≥ 1). For every
general linear space Hj of dimension j in PN , let aj = [aj,1, . . . , aj,n] be the
global section type of FHj (as a sheaf on Hj ' Pj); especially st(F) = a1 = b.
Then

h0OPN (b)− h0F ≥
(4)

≥
∑

1≤i≤n
2≤j≤N
aj,i<0

h0OPN (aj−1,i) +
∑

1≤i≤n
2≤j≤k≤N

aj,i≥0

h0OPN−k(aj,i)h0OPk(aj−1,i − aj,i − 1).
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Proof. We proceed by induction on N and b1. If N = 1, the statement is
trivial. If b1 < 0, then both sides of the inequality are 0.

Now we assume the thesis for torsion free sheaves on PN−1 and torsion free
sheaves whose first integer of the splitting type is < b1.

We immediately have, from Proposition 1, the following inequality

(5) h0OPN (b)− h0F ≥ (h0OPN (b− 1)− h0F(−1))+

+ (h0OH(b)− h0FH) +
∑

1≤i≤n
aN,i<0

h0OPN−1(aN−1,i).

We now conclude using the inductive hypothesis on both the dimension of
the projective space (for what concernes h0OH(b) − h0FH) and on the first
integer b1 of the splitting type (for what concernes h0OPN (b− 1)− h0F(−1))
and reckoning that h0OPr (a− 1) + h0OPr−1(a) = h0OPr (a). ¤

Corollary 1. Let F be a rank n torsion free sheaf on PN generated by global
sections, or more generally such that gsrk(F) = rk(F). If b = [b1, . . . , bn] is its
splitting type and a = [a1, . . . , an] is the global section type of a general plane
section, then

(6) h0F ≤ h0OPN (b)−
n∑

i=1

h0OPN−2(ai) h0OP2(bi − ai − 1)

as well

(7) h0F ≤ h0OPN (b)− h0OP2(b− a− 1).

Proof. First of all observe that gsrk(F) = rk(F) implies ai ≥ 0 for every i.
Thus the inequality (6) is a straightforward consequence of (4), where we omit
in the right side every summand except those with j = k = 2; (7) can be
obtained by the previous one because in our hypothesis h0OPN−2(ai) ≥ 1. ¤

For every torsion free sheaf F , all the sheaves F(t) fulfill the hypothesis
of the previous result for sufficiently hight values of t. If we consider the
inequalities (6) for such sheaves, we obtain an upper bound for h0F(t) set up
by h0OPN (b + t), which is a polynomial in t of degree N , minus a “smaller”
piece given by a polynomial in t of degree N − 2. We will see in §4 that this
is a quite reasonable bound, since the difference h0OPN (b + t) − h0F(t) is in
fact a polynomial of t-degree N − 2.

Corollary 2. For every torsion free sheaf F on PN with splitting type b =
[b1, . . . , bn] and global section type a = [a1, . . . , an] the following are equivalent:

(1) F ' OPN (b).
(2) a = b.
(3) h0F(t) = h0OPN (b + t) for every t ∈ Z.
(4) h0F(t) = h0OPN (b + t) for some t ≥ −an.
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Proof. (1) ⇒ (2) and (3) ⇒ (4) are obvious.

(2) ⇒ (3). By the definition of global section type we get

h0F(t) ≥ h0OPN (a + t)

and then, in our hypothesis h0F(t) ≥ h0OPN (b + t). On the other hand
Theorem 1 gives the opposite inequality.

(4) ⇒ (2). As t ≥ −an, every integer in the global section type of F(t) is
positive; moreover the same holds for the restriction of F(t) to a general linear
space of every dimension, thanks to Lemma 1(iii). Using the same notation as
in Theorem 1, (4) can be written in the following shorter form:
(8)
h0OPN (b + t)− h0F(t) ≥

∑

1≤i≤n
2≤j≤k≤N

h0OPN−k(aj,i + t)h0OPk(aj−1,i − aj,i − 1).

Thus condition (4) can hold only if aj−1,i = aj,i for every i, j, that is, if
a = gst(F) = gst(FH) = · · · = st(F) = b.

(2)+(3)⇒ (1). By definition of global section type and the hypothesis a = b
there is an injective map φ : OPN (b) ↪→ F ; by the assumption (3) coker(φ)(t)
has no global sections for every t ∈ Z. Then φ is an isomorphism. ¤

The following result generalizes Lemma 1.3.3 of [12], where only vector bun-
dles generated by global sections are considered: note that the condition “gen-
erated by global sections” implies, in our terminology, a ≥ 0. For another proof
see also [2].

Corollary 3. Let F be a torsion free sheaf on PN with gst(F)=a=[a1, . . . , an].
Then c1 ≥

∑
ai and equality holds if and only if F ' OPN (a).

Especially, if gsrk(F) = rk(F), then c1 ≥ 0 and equality holds if and only if
F ' On

PN .

Proof. Let st(F) = [b1, . . . , bn] and gsrk(F) = [a1, . . . , an]. Lemma 1(iii) says
that bi ≥ ai for every i; then c1 =

∑
bi ≥

∑
ai. Moreover equality can hold if

and only if a = b and we conclude by Corollary 2.
With the further hypothesis gsrk(F) = rk(F), we immediately have c1 ≥ 0

and again for equality we conclude by Corollary 2. ¤

3. Horrocks’ splitting criterion

In this section we will apply the same approach developed in §2 in order to
generalize the Horrocks’ splitting criterion to torsion free sheaves. The results
of the two sections are closely related so that a reference to the previous one
(mainly to Corollary 2) could shorten the proofs in the present; however we
prefer to avoid any reference and present here independent and self-included
proofs in order to underline how simple, direct and effective the employed
methods are.
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For other generalizations of the Horrocks criterion, see also [1].

Theorem 2. Let F be a torsion free sheaf on PN , N ≥ 2, H be a hyperplane in
PN and b = [b1, . . . , bn] be an ordered sequence of integers. Then F ' OPN (b)
if and only if FH ' OH(b) and either one of the following conditions holds:

(i) N = 2 and H1(F(t)) = 0 for every t ≤ −bn,
(ii) N ≥ 3 and H1(F(t)) = 0 for every t¿ 0.

Proof. We only prove the non trivial part, that is, we assume that either (i) or
(ii) holds and prove that F splits. Up a twist, we may assume bn = 0, so that
OH(b) is generated by global sections. For every t ∈ Z, the exact sequences:

(9) 0 → F(t− 1) → F(t) → FH(t) ' OH(b + t) → 0.

Now observe that the hypothesis imply that H0F(t) → H0OH(b + t) is sur-
jective. In fact, if N ≥ 3 the finiteness of H1

∗ (F) and H1
∗ (FH) = 0 imply

H1
∗ (F) = 0; if N = 2, the surjectivity of the map is a direct consequence of

(i) if t ≤ 0 and so also if t > 0 because OH(b) is generated by global sections.
Thus (9) induces in cohomology the exact sequence:

(10) 0 → H0F(t− 1) → H0F(t) → H0OH(b + t) → 0.

Now we can fix for every j a global section in H0F(−bj) whose image is
the canonical generator of the j-th summand of OH(b− bj) and define a map
ψ : OPN (b) → F : we conclude by showing that this map is in fact an isomor-
phism.

First of all, ψ is injective because its kernel is a torsion free sheaf which
vanishes if restricted to H. Moreover, summing up on t ≤ t0 the equalities
h0F(t)−h0F(t−1) = h0OH(b+ t), we get h0F(t0) = h0OPN (b+ t0) for every
t0 ∈ Z (note that H0F(t) = 0 if t¿ 0, because F is torsion free). Then there
is an exact sequence:

0 → OPN (b) → F → T → 0,

where T is the cokernel of ψ. By the exact sequence of cohomology, we can
see that, for every t ∈ Z, H0T (t) = 0, because h0F(t) = h0OPN (b + t) and
h1OPN (b+t) = 0; then T = 0, that is, ψ is also surjective and we conclude. ¤

Corollary 4. Let F be a torsion free sheaf on PN , N ≥ 2. Then
F is split ⇐⇒ Hi

∗F = 0 for i = 1, . . . , N − 1.

Proof. If N = 2, FH is a torsion free sheaf on H ' P1 and then it is split; so
we conclude thanks to Theorem 2. If N > 2, the restriction of F to a general
hyperplane is a torsion free sheaf on H ' PN−1 and has trivial intermediate
cohomology too. So, by induction, FH is split and again we conclude thanks
to Theorem 2. ¤

Corollary 5. Let F be a reflexive sheaf on PN , N ≥ 3. Then
F is split ⇐⇒ ∃ a plane H such that FH is split.
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Proof. By induction we can assume that FH ' OH(b), where H is a hyper-
plane; then Hi

∗FH = Hi
∗OH(b) = 0 for i = 1, . . . , N − 2 and moreover there

is the exact sequence (9). Passing in cohomology and bearing in mind that
H1F(t) = 0 for t¿ 0 (see Notation 1) we can easily deduce that Hi

∗F = 0 for
i = 1, . . . , N − 1. So Corollary 4 leads to conclude that F ' On

PN , against the
assumption. ¤

4. c2(F) ≥ c2(OPN (b))

In the present section we will show that the split bundle OPN (b) has the
smallest second Chern class among torsion free sheaves having the same split-
ting type b = [b1, . . . , bn]. More precisely, as c2(OPN (b)) =

∑
i<j bibj , we

will show that the second Chern class of a rank n torsion free sheaf F on
PN is strictly bigger than

∑
i<j bibj unless F is split. The proofs directly

lean on the main results of the previous sections, mainly of §2: the connection
is given by the Euler characteristic χ(F) =

∑N
i=1(−1)ihi(F). The equality

χ(F(t)) = h0F(t), that holds for every t À 0, allows us to translate results
about h0F in terms of Chern classes of F . In fact by Grothendieck-Hirzebruch-
Riemann-Roch (see [6, Appendix A, 4.1]) χ(F) can be expressed as a polyno-
mial in the Chern classes; for instance if N = 2, the formula is:

(11) χ(F) =
1
2
(c21 + 3c1)− c2 + n.

We underline that though this argument seems to be bound to “hight twists”
of F in order to use the above quoted equality χ(F(t)) = h0F(t), however
the properties of c2(F) we will obtain also hold for every torsion free sheaf F ,
because the difference c2(F(t))− c2(OP2(b + t)) does not depend on t.

Theorem 3. Let F be a rank n torsion free sheaf on PN , with st(F) =
[b1, . . . , bn] and let [a1, . . . , an] the global section type of its restriction to a
general plane. Then

c2(F) ≥
∑

1≤i<j≤n

bibj +
n∑

i=1

(bi − ai)(bi − ai + 1)
2

and
c2(F) =

∑
bibj ⇐⇒ F ' OPN (b).

Proof. As c2(F) = c2(FP2), we may assume that F is defined on P2. Using
(11) for both sheaves F and OP2(b) that have the same rank n and first Chern
class c1 =

∑
bi, we find:

χ(OP2(b))− χ(F) = c2(F)− c2(OP2(b)) = c2(F)−
∑

i<j

bibj .

Moreover, as both integers c2(F)−∑
bibj and

∑ (bi−ai)(bi−ai+1)
2 are invariant

by twist, we can also assume that χ(OP2(b)) − χ(F) = h0OP2(b) − h0F . So
Corollary 1 allows to conclude. ¤
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Corollary 6. Let F be a non-split torsion free sheaf on PN , with st(F) =
[b1, . . . , bn]. If either b1 ≤ 0 or bn ≥ 0, then c2(F) > 0. So, there are at most
b1 − bn − 1 integers t such that c2(F(t)) ≤ 0.

Now we consider semistable sheaves. Recall that a torsion free sheaf on PN

is semistable if for every non-zero subsheaf G ⊂ F we have c1(G)
rk(G) ≤ c1(F)

rk(F) ; if
moreover the inequality is strict for every G such that rk(G) < rk(F), then F
is stable.

Now we will prove that every non-split semistable torsion free sheaf of any
rank on P2 has a positive second Chern class.

Lemma 4. Let F be a non-split rank n torsion free sheaf on PN , normalized
so that 1− n ≤ c1(F) ≤ 0. If F is semistable, then

(i) h0(F(−1)) = 0,
(ii) h0(F) = 0 if c1 < 0 and h0(F) ≤ n− 1 if c1 = 0.

Proof. (i) and the first part of (ii) directly follow from semistability (see also
[12, Lemma 1.2.5 and Remark 1.2.6]). Moreover the statement obviously holds
if n = 1. Then assume n ≥ 2, c1 = 0 and h0F ≥ n; we may also suppose that
n is the minimal one for which such a sheaf exists.

Take n linearly independent global sections of F and define the sheaf H
generated by them, so that: 0 → H → F and On

PN → H → 0. Since F
and On

PN are semistable, we must have both c1(H) ≤ 0 and c1(H) ≥ 0, so
that c1(H) = 0; as a consequence also H have to be semistable, because F is.
Moreover, by construction, h0H ≥ n. Thus, the minimality of n forces rk(H)
to be n, so that the above surjective map must be an isomorphism: H ' On

PN .
So there is an injective map On

PN ↪→ F and Corollary 3 allows to conclude. ¤

Lemma 5. Let F be a torsion free sheaf on P2. Then

h2F − h1F ≤ h0F∨(−3)− h1F∨(−3).

Proof. Since F is torsion free, the canonical morphism F → F∨∨ is injective
and its cokernel is supported by a finite subset of P2. Moreover, F∨ is locally
free.

Applying Serre duality to F∨ one gets that h2F = h2F∨∨ = h0(F∨(−3))
and h1F ≥ h1F∨∨ = h1(F∨(−3)). ¤

5. Applications to the discriminant

For every rank n torsion free sheaf F on PN the discriminant is the number

∆(F) = 2nc2 − (n− 1)c21
which is invariant both up twists and dual, that is ∆(F) = ∆(F(t)) = ∆(F∨).

Theorem 4. Let F be a non split semistable torsion free sheaf on P2. Then

∆(F) ≥ 2n.
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Furthermore, if F is stable, then

∆(F) ≥ 3
4
n2.

Proof. We may assume that −n
2 ≤ c1(F) ≤ 0, substituting to F , if necessary,

a suitable twist or dual of a twist. By Lemma 5 and Lemma 4 we have h2F −
h1F ≤ h0F∨(−3) = 0; moreover h0(F) = 0 if F is stable and h0(F) ≤ n− 1 if
c1 = 0 and F is properly semistable. Then the Euler formula (11) gives:

1. c2 ≥ (c2
1+3c1)

2 + n if F is stable,
2. c2 ≥ 1 if F is properly semistable.
If F is stable, 1 gives ∆(F) ≥ (c1 + n)(c1 + 2n) and the right hand assumes

its minimum when c1 assumes its minimum −n
2 .

If F is properly semistable, 2 gives directly the wanted relation ∆(F) ≥
2n. ¤

The positivity of the discriminant for semistable torsion free sheaves on a
smooth surface was proved by Bogomolov; for a proof see [9, Theorem 3.4.1].

Corollary 7. If a plane section FH of a non totally split torsion free sheaf F
is semistable, then c2(F) > 0.

For rank 2 vector bundles on P2, the above result is a consequence of
Schwarzenberger inequality c21 − 4c2 ≤ 0; it can also be extended to rank 2
reflexive sheaves on PN as their general plane section is a semistable vector
bundle (see [12] or [7]). If rk(F) > 2 it is a difficult open question to state if
the general plane section of a semistable vector bundle is semistable too. What
it is known is that the splitting type of a semistable vector bundle on PN has
no gap ([12, Theorem 2.1.4 and Corollary 1]). Recall that an ordered sequence
of integers b = [b1, . . . , bn] has no gap if bi− bi+1 ≤ 1 for every i = 1, . . . , n−1.
Using this property of the splitting type and Theorem 3 we can obtain a gen-
eralization of Schwarzenberger inequality to semistable bundles of rank n on
PN (see [12, Problem 1.4.1]). The proof is just a numerical computation; the
following example shows as the general proof works.

Example 1. Let F be a rank n ≤ 4 semistable vector bundle (or, more gen-
erally, torsion free sheaf whose splitting type has no gap) on PN . If F is not
totally split, then c2 ≥ 0.

Let in fact b = [b1, . . . , bn] be the splitting type of F . Theorem 3 says that
c2(F) can be negative only if b1 > 0 > bn. So it will be sufficient to check every
possible splitting type with a positive b1 and a negative bn and use Theorem 3.

• If n = 2, no such case can realizes.
• if n = 3 the only possible splitting type is [1, 0,−1]. Then c2 >∑

bibj = −1.
• If n = 4 there are 5 possible cases: three of the integers bi are 1, 0, −1

while the forth can be any element b ∈ {−2, −1, 0, 1, 2}. Then
c2 >

∑
bibj = −1 + b(−1 + 0 + 1) = −1.
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Theorem 5. Let F be a rank n semistable vector bundle on PN or, more
generally, a rank n torsion free sheaf on PN whose splitting type has no gap.
If ci = ci(F), then

(12) ∆(F) ≥ − 1
12
n2(n2 − 1).

More precisely, if c is the only integer such that 0 ≤ c ≤ n
2 and c1 ≡ ±c mod n,

then

(13) ∆(F) ≥





−2n
4

(
n

3

)
− (n− 1)c2 if n is even,

−2n
4

(
n+ 1

3

)
+ (n− 1)c(n− c) if n is odd.

Moreover the equality can hold in either inequality only if F is totally split;
especially in the semistable case, only if F ' OPN .

Proof. The left hand of the three inequalities is invariant by twist and dual; so
it is sufficient to prove the statement assuming that c1 = c. Thus (13) becomes:

(14) c2 ≥





−1
4

(
n

3

)
if n is even,

−1
4

(
n+ 1

3

)
+

1
2
(n− 1)c if n is odd.

By hypothesis, the splitting type b = [b1, . . . , bn] of F has no gap (for vector
bundles see [12, Theorem 2.1.4 and Corollary 1]). Moreover we know that
c2 ≥

∑
bibj = 1

2 (
∑
bi)2 − 1

2

∑
b2i = 1

2c
2 − 1

2

∑
b2i (Theorem 3).

Now let us compute the maximal value of
∑
b2i for any sequence [b1, . . . , bn]

without gaps and such that
∑
bi = c.

Clearly the maximal value is reached when b is either the sequence [−n−2
2 ,

. . . , n−2
2 ] plus one more item given by c if n is even, or the sequence [−n−3

2 ,
. . . , n−1

2 ] plus one more item given by c− n−1
2 if n is odd.

The formula for the sum of consecutive squares:
k∑

i=1

i2 =
2k3 + 3k2 + k

6

and a straightforward computation give (14).
In order to deduce (12) in the odd case, we only forget the last summand,

while in the even one we observe that the maximal value of − (n−1)
2n c2 is obtained

when c = n
2 .

Finally, the equality can hold only if F ' OPN (b) and b is either one of the
two special splitting type above considered; the only semistable split bundle of
that type is OPN . ¤

For a similar result for semistable torsion free sheaves, see [9, Theorem 7.3.1].
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6. cs(F(t)) and cs(OPN (b + t))

Let F be a rank n torsion free sheaf on PN with Chern classes ci.
An argument similar to the one of c2 can be applied to each Chern class cs,

s ≤ n. Using (1) we can see that cs(F(t)) is given by a degree s polynomial
whose leading coefficient only depends on n and s and whose next coefficient
only depends on n, s and c1. So, if b = st(F), the difference cs(F(t)) −
cs(OPN (b + t)) is a polynomial of degree lower or equal to s− 2, because the
two sheaves have both the same rank and the same first Chern class. Moreover
the coefficient of ts−2 is

(
n−2
s−2

)
(c2(F)−∑

bibj), that cannot vanish, in fact it
is strictly positive, unless F is split (see Theorem 3). We can summarize the
consequences in the following:

Corollary 8. Let F be a rank n torsion free sheaf on PN with splitting type
b. If 3 ≤ s ≤ min{n, N}, then cs(F(t)) > cs(OPN (b + t)) for t À 0. More
precisely,

Λ(s)
F (t) := cs(F(t))− cs(OPN (b + t))

is a degree s− 2 polynomial with a positive leading coefficient:

(15) Λ(s)
F (t) =

(
n− 2
s− 2

)
(c2(F)−

∑

i6=j

bibj) ts−2 + (lower terms).

As far as Chern classes of codimension s > n are concerned, (1) shows that
cs(F(t)) is a polynomial in t of degree ≤ s − n − 1 and that the coefficient of
ts−n−1 is (−1)s−n−1cn+1. So, if cn+1 = 0, also cs = 0 for every s > n: it is
the case of vector bundles. On the other hand if cn+1 6= 0, then cs(F(t)) are
definitely positive or definitely negative, depending on the sign of cn+1 and the
parity of s− n− 1.

7. Bounds for cohomology and regularity

In the paper [4] it is proved that the absolute value of the i-th Chern class of
every rank n vector bundle on PN is upper-bounded by a polynomial function
depending on n, N , the splitting type b and the first and second Chern classes
c1 and c2.

Actually, no such a bounding formula exists for the wider class of torsion
free sheaves, as we can see in the following example.

Example 2. Let IY be the ideal sheaf of any set of M different points in
PN , which is of course a torsion free sheaf of rank 1 and generic splitting type
[b1 = 0]. An easy computation shows that its Chern classes vanish, except the
last one cN (IY ) = ±M(N − 1)!.

For every integer n consider the rank n torsion free sheaf F = IY ⊕On−1
PN .

Then st(F) = b = [0, . . . , 0] and ci(F) = 0 for every i = 1, . . . , N − 1, while
cN (F) = ±M(N − 1)!. It is evident that |cN (F)| cannot be bounded by a
function (either polynomial or not) f(n, N, c1, c2, b) because, for fixed n and
N , f(n, N, 0, 0, 0) is a constant, while |cN (F)| can be as big as we want.
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However we can generalize Theorem 3.3 and Theorem 4.2 of [4] to reflexive
sheaves; our proof follows in its essential points the proof for vector bundles.

In the following F will be a rank n reflexive sheaf on PN , δ the number
δ2 = c2 −

∑
bibj and d the diameter d = b1 − bn of the splitting type b; both

δ and d are invariant up any twist of F .

Lemma 6. Fixing n,N non-negative integers, every polynomial function de-
pending on {c1, c2,b, d, δ2} can be bounded by polynomials functions depending
on either one of the following sets: {b, δ2}, {b, c2}, {c1, c2, d}, {c1, d, δ2}.
Proof. It is sufficient to recall that c1 =

∑
bi, δ2 = c2− 1

2 (
∑
bi)

2 + 1
2

∑
b2i and

observe that the following inequalities hold:
c1
n
− d ≤ bn ≤ · · · ≤ b1 and

c1
n

+ d ≥ b1 ≥ · · · ≥ bn. ¤
Theorem 6. For any choice of non-negative integers n, N and s, with N ≥ 2
and 3 ≤ s ≤ N , there are polynomial functions Pn,N , Qn,N , Cn,N,s depend-
ing on {c1, c2,b, d, δ2} (or on one of the sets of Lemma 6), such that for any
reflexive sheaf F of rank n on PN we have:

(i) hiF ≤ Pn,N for all 0 ≤ i ≤ N ;
(ii) hiF(k) = h1F(−k) = h0F(−k) = 0 for all k ≥ Qn,N and 1 ≤ i ≤ N ;
(iii) the Castelnuovo-Mumford regularity of F is lower than Qn,N and es-

pecially F(k) is generated by global sections for k ≥ Qn,N +N ;
(iv) |cs(F)| ≤ Cn,N,s.

Proof. First of all, we observe that (iii) is a consequence of (ii) for Castelnuovo-
Mumford ([10], Proposition on page 99).

Furthermore we can obtain (iv) from (i) proceeding by induction on s and
N ; in fact, restricting the sheaf to a generic linear space of dimension s, we
can apply Riemann-Roch for sheaves on Ps and write cs as a polynomial in
the Chern classes c1, . . . , cs−1 and the Euler characteristic χ(F).

(i) for i = 0 and i = N and (ii) for i = N follow immediately from (7).
We have to prove (i) and (ii) for 1 ≤ i ≤ N − 1. We start with N = 2.
In this case, h1F = h0F+h2F−χ(F) and so h1F is bounded by a polynomial

depending on one of the sets of invariants considered above.
In order to prove (ii) for i = 1 we consider a general line L and we observe

that for all k ≥ −bn, FL(k) is generated by global sections and h1FL(k) = 0.
If there is k1 ≥ −bn such that the map H1F(k1 − 1) → H1F(k1) is not only
surjective but also injective, then it is an isomorphism for all k ≥ k1. Then,
for k ≥ −bn, the sequence h1F(k) is strictly decreasing or definitely constant.
Because for Serre h1F(k) = 0 for k À 0, then h1F(k) = 0 for all k ≥ −bn+h1F .

Finally, since F on P2 is a vector bundle, using duality we have h1F(−k) =
h1F∨(−k− 3) and so the last condition holds applying what already shown to
the sheaf F∨, whose invariants agree with those of F up to the sign.

Consider now N ≥ 3. We prove (i) and (ii) for 1 ≤ i ≤ N − 1 proceeding by
induction on N and assuming the thesis for a generic hyperplane H ∼= PN−1.
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For i > 1, we have hiF(k) = hiF(k + 1) for all k ≥ k0 = Qn,N−1 and
hiF(k) = 0 for k À 0; then hiF(k) = 0 for all k ≥ k0. Furthermore hiF(k) ≤
hiF(k+ 1) + hi−1FH(k+ 1); we then obtain a bound for hiF summing up the
bounds for hi−1FH(k + 1), k from 0 to k0.

The only case left is i = 1. We recall that the first cohomology module of
a reflexive sheaf is of finite type; indeed, for k À 0, n − 1 general sections of
F(k) degenerate on a codimension 2 subvariety Y given by the exact sequence

0 → On−1
PN → F(k) → IY (c1) → 0

(see [11, §2]). Y is generically smooth and without embedded or isolated com-
ponents of codimension ≥ 3.

Using the same arguments as before, we prove that h1F(−k) = 0 for all
k ≥ k′ such that h0FH(−k) = h1FH(−k) = 0. Using h1F(−k) ≤ h1F(−k −
1)+h1F(−k), we obtain a bound for h1F summing up the bounds for h1F(−k),
k from 0 to k′.

Finally, the sequence of h1F(k)’s is strictly decreasing or definitely 0; so
h1F(k) = 0 if k ≥ k′′ + h1F(k′′). ¤

Corollary 9. For any choice of non-negative integers n, N and s, with N ≥ 2
and 3 ≤ s ≤ N , there are polynomial functions Pn,N and Cn,N,s depending on
{c1, c2,b, d, δ2} (or on one of the sets of Lemma 6) and t, such that for any
twist F(t) of a reflexive sheaf F of rank n on PN we have

1. hiF(t) ≤ Pn,N for all 0 ≤ i ≤ N ;
2. |cs(F(t))| ≤ Cn,N,s.

8. Sharp examples

In this last section we examine the main results of the paper, in which
inequalities are presented, in order to check how they are sharp. First of all
we take into consideration the bound on the dimension of the space of global
sections given by (4), which is the starting point for a big amount of our results.

Let F be a rank n non totally split torsion free sheaf on PN with Chern
classes ci. Recall that the Euler characteristic χ(F(t)), as a function of t and
ci, is a polynomial with rational coefficients which depend on n and N . By
the splitting principle, this polynomial can be computed using free sheaves; in
this way we can see that, if ci is regarded as a variable of weight i, χ(F(t)) has
“global degree” N . Especially:
• the coefficients of tN and tN−1 only depend on n, N and c1,
• the coefficient of tN−2 is given by − c2

(N−2)!+ terms depending on n,N, c1.
If b is the splitting type of F , we can measure how much F differs from the

free sheaf OPN (b) (in a natural way the closest free sheaf to F) through the
polynomial DF (t) = χ(OPN (b + t))− χ(F(t)). As OPN (b) has both the same
rank and first Chern class as F , the degree of DF (t) as a polynomial in t can
be at most N − 2; but Theorem 3 insures that the coefficient of tN−2 cannot



SPLITTING TYPE, GLOBAL SECTIONS AND CHERN CLASSES 1163

vanish, so that the degree of DF (t) with respect to t is always N − 2. If tÀ 0
we have χ(F(t)) = h0F(t) and χ(OPN (b + t)) = h0OPN (b + t), so that also
h0OPN (b+ t)−h0F(t) = DF (t), a polynomial of degree N − 2 with respect to
t.

On the other hand we can compute the lower bound for h0OPN (b + t) −
h0F(t) given by the inequality (4). If t À 0, the global section type of F(t)
and those of its restrictions to general linear spaces are all positive, so that we
only have to consider the last sum in (4); moreover thanks to Corollary 2 we
know that there is at least one non-zero contribution for j = k = 2. Then the
bound given by (4) is a polynomial of degree N − 2 with respect to t, the same
degree as DF (t).

Furthermore, the equality can in fact realize in (4), as shown by the following
examples.

Example 3. Let F be a normalized null-correlation bundle on P3; it has
splitting type [0, 0] and it is linked to the disjoint union of a pair of line Y by
the exact sequence:

(16) 0 → OP3(−1) → F → IY (1) → 0

so that h0(OP3(t) ⊕ OP3(t)) − h0F(t) = t + 2 for every t ≥ 1. Moreover
gst(F) = [−1,−1] and gst(FH) = [0,−1] for a general plane H, so that t+ 2 is
exactly the bound given by (4).

Example 4. Let n be any positive integer and let b′ = [0, . . . , 0] be a sequence
of length n− 1. Fix a line Y in P3; a general global section of ωY ⊗OP3(b′ +
4) ' OY (b′ + 2) defines, as an extension, a rank n reflexive sheaf F (see [7,
Theorem 4.1]):

(17) 0 → On
P3 → F → IY → 0.

It is easy to check that gst(F) = gst(FH) = [0, . . . , 0,−1] (H a general plane)
while st(F) = b = [0, . . . , 0], so that (4) gives the bound h0OP3(b + t) −
h0F(t) ≤ t + 1 for every t À 0; using (17) we can see that h0OP3(b + t) −
h0F(t) = h0OP3(t) − h0IY (t) = h0OP1(t) = t + 1, that is, the equality holds
for every t ≥ 1.

Furthermore we can obtain equality for every positive value k of the lead-
ing coefficient of DG(t), taking the sheaf G direct sum of k copies of the
above considered sheaf F : in fact st(G) = [0, . . . , 0], gst(G) = gst(GH) =
[0, . . . , 0,−1, . . . ,−1], DG(t) = kt + k for every t ≥ 1, realizing equality in (4)
for every t ≥ 1.

Now we consider the bounds on c2 and S12 given in Theorem 3 and Theo-
rem 4. Observe that the second Chern classes of the sheaves considered in the
above examples assume the minimum value allowed for non totally split sheaves,
that is

∑
bibj +1. Now we will see that, on the other hand, c2 can assume every

value above that; more precisely for every n ≥ 2, sequence b = [b1, . . . , bn] and
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positive integer r, there is a rank n reflexive sheaf F such that st(F) = b and
c2(F) =

∑
bibj + r.

If we consider a sequence b corresponding to the minimal value of S12 for
a given

∑
bi, the reflexive sheaves obtained in Example 5 are extremal with

respect to the bounds given in Theorem 5.
As c2(F) − c2(OPN (b)) and S12(F) are invariant by twist, we can assume,

without loss of generality, bn = 0.

Example 5. Let r be any positive integer and b′ = [b1, . . . , bn−1] be any
sequence of non negative integers. Fix a curve Y in P3 which is a complete
intersection (r, 1). A general global section of ωY ⊗OP3(b′+4) ' OY (b′+r+1)
defines, as an extension, a rank n reflexive sheaf F :

(18) 0 → OP3(b′) → F → IY → 0.

Using multiplicativity of Chern polynomials we can compute Chern classes:
c2(F) = c2(OP3(b′)) + deg(Y ) = c2(OP3(b)) + r, where b = [b1, . . . , bn−1, 0] is
the splitting type of F .

The second item of Corollary 6 allows a negative c2 only for b1 − bn − 1
twists of a sheaf F with splitting type [b1, . . . , bn]. In the following example
are presented sheaves F such that c2(F(t)) < 0 if and only if bn < t < b1 that
is for t in the wider interval allowed by the above quoted result.

Example 6. Fix a line Y in P3 and any positive integer b. A general global
section of ωY (2 + 2b) defines, as an extension, a rank 2 reflexive sheaf F :

0 → OP3(b) → F → IY (−b) → 0.

The splitting type of F is b = [b,−b] and the first two Chern classes are
c1(F) = 0 and c2(F) = −b2 + 1. Then c2(F(t)) = t2 − b2 + 1 is negative if and
only if −b+ 1 ≤ t ≤ b− 1.

Note that for every t ≥ b we have h0OP3(b+t)−h0F(t) = t−b+1 which is the
minimum allowed by Theorem 3; as a consequence, also c2(F)(t) = t2 − b2 + 1
is the minimum allowed by Corollary 6.

In a easy way we can obtain analogous sharp examples of any rank n taking
into consideration for instance the sheaf F ⊕On−2

P3 , where F is that considered
above.
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[13] T. Sauer, Nonstable reflexive sheaves on P 3, Trans. Amer. Math. Soc. 281 (1984), no.

2, 633–655.
[14] R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. Lond. Math.

Soc. (3) 11 (1961), 623–640.

Cristina Bertone
Dipartimento di Matematica dell’Università
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