DOI QR코드

DOI QR Code

Evaluation of Member Plastic Deformation Demands for Dual Systems with Special Moment Frames

특수모멘트골조를 가진 이중골조시스템을 위한 부재소성변형 평가

  • Received : 2010.05.24
  • Accepted : 2010.08.30
  • Published : 2010.10.31

Abstract

For safe seismic evaluation and design, it is necessary to predict the plastic deformation demands of members. In the present study, a quick and reasonable method for the evaluation of member plastic deformations of dual systems was developed on the basis of results of elastic analysis, without using nonlinear analysis. Plastic deformations of beams, columns, and walls are functions of member stiffness, story drift ratio, and moment redistribution determined from elastic analysis. For dual systems with rigid connections between walls and beams, an increase in the plastic deformations of beams due to the rocking effect was considered. The proposed method was applied to 8-story dual systems and the predicted plastic deformations were compared with the results of nonlinear analysis. The results showed that the proposed method accurately predicted the member plastic deformations with simple calculations, but that for the accurate evaluation of member plastic deformations, the inelastic story drift ratio must also be predicted with accuracy. The proposed method can be applied to both the performance-based seismic design of new structures and the seismic evaluation of existing structures.

안전한 내진설계를 위해서는 부재에 요구되는 소성변형을 평가하여야 한다. 본 연구에서는 복잡한 비선형해석없이 탄성 해석결과에 근거하여 이중골조의 부재소성변형을 평가할 수 있는 빠르고 간편한 방법을 개발하였다. 보, 기둥, 벽체 등의 소성변형은 부재강성, 층간변위비, 모멘트 재분배, 단면치수 및 소성힌지 위치의 함수로 결정된다. 벽체와 보가 모멘트 접합된 경우에는 벽체의 소성변형에 의한 로킹효과를 고려하여 증가된 소성변형을 구한다. 8층 이중골조에 대하여 제안된 방법을 적용하였고, 비선형해석을 통하여 제안된 방법의 정확성을 검증하였다. 제안된 방법은 단순계산으로 부재소성변형을 합리적으로 예측하지만, 정확한 부재소성변형 평가를 위해서는 비탄성 층간변위비의 정확한 예측이 필요한 것으로 나타났다. 제안된 방법은 향후 성능중심 내진설계에 활용할 수 있을 뿐만 아니라 기존 건물의 성능평가에도 활용될 수 있을 것이다.

Keywords

References

  1. International Code Council, 2009 International Building Code, International Code Council, INC. 2009.
  2. 대한건축학회, 건축구조설계기준, KBC 2005, 2005.
  3. American Society of Civil Engineers (ASCE), “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” FEMA 356 report, Federal Emergency Management Agency, Washington, D.C, 2000.
  4. Paulay, T., Priestley, M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley and Sons, Inc, New York, USA, 1992, 744.
  5. 엄태성, 박홍근, “지진하중을 받는 철근콘크리트 모멘트골조 의 모멘트재분배와 소성변형,” 한국콘크리트학회논문집, 21권 2호, 217-226, 2009.
  6. 엄태성, 박홍근, “모멘트골조의 내진설계를 위한 부재 소성변형 요구량 예측,” 한국지진공학회 논문집, 13권 5호, 51-60, 2009. https://doi.org/10.5000/EESK.2009.13.5.051
  7. American Concrete Institute, Building Code Requirements for Structural Concrete, ACI 318-08 and ACI 318R-08, Farmington Hills, Michigan, USA, 465, 2008.
  8. Prakash, V., Powell, G. H., and Campbell, S., DRAIN-2DX Base Program Description and User Guide version 1.10. SEMM Report No. 93/17, Univ. of California, Berkeley, Calif., USA., 90, 1993.
  9. Applied Technology Council (2005). “Improvement of Nonlinear Static Seismic Analysis Procedures,” FEMA 440 Report, Federal Emergency Management Agency, Washington D. C., 392.

Cited by

  1. Redistribution of Negative Moments in Beams Subjected to Lateral Load vol.23, pp.6, 2011, https://doi.org/10.4334/JKCI.2011.23.6.731