DOI QR코드

DOI QR Code

Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease

  • Shin, Jong-Yeon (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Yu, Saet-Byeol (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Yu, Un-Young (Department of Biochemistry, Ewha Womans University School of Medicine) ;
  • Ahnjo, Sang-Mee (Division of Brain Disease, Center for Biomedical Research, National Institute of Health, Korea Center for Disease Control and Prevention) ;
  • Ahn, Jung-Hyuck (Department of Biochemistry, Ewha Womans University School of Medicine)
  • 투고 : 2010.07.26
  • 심사 : 2010.08.02
  • 발행 : 2010.10.31

초록

The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase $3\beta$(GSK-3$\beta$), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.

키워드

참고문헌

  1. Brown, P. O. and Botstein, D. (1999) Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33-37. https://doi.org/10.1038/4462
  2. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20-24. https://doi.org/10.1038/4447
  3. Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., Kohn, K. W., Reinhold, W. C., Myers, T. G., Andrews, D. T., Scudiero, D. A., Eisen, M. B., Sausville, E. A., Pommier, Y., Botstein, D., Brown, P. O. and Weinstein, J. N. (2000) A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24, 236-244. https://doi.org/10.1038/73439
  4. White, K. P. (2001) Functional genomics and the study of development, variation and evolution. Nat. Rev. Genet. 2, 528-537. https://doi.org/10.1038/35080565
  5. Rifkin, S. A., Kim, J. and White, K. P. (2003) Evolution of gene expression in the Drosophila melanogaster subgroup. Nat. Genet. 33, 138-144. https://doi.org/10.1038/ng1086
  6. Passador-Gurgel, G., Hsieh, W. P., Hunt, P., Deighton, N. and Gibson, G. (2007) Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat. Genet. 39, 264-268. https://doi.org/10.1038/ng1944
  7. Gautier, L., Cope, L., Bolstad, B. M. and Irizarry, R. A. (2004) affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307-315. https://doi.org/10.1093/bioinformatics/btg405
  8. Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57-63. https://doi.org/10.1038/nrg2484
  9. Kane, M. D., Jatkoe, T. A., Stumpf, C. R., Lu, J., Thomas, J. D. and Madore, S. J. (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic. Acids. Res. 28, 4552-4557. https://doi.org/10.1093/nar/28.22.4552
  10. Cloonan, N., Forrest, A. R., Kolle, G., Gardiner, B. B., Faulkner, G. J., Brown, M. K., Taylor, D. F., Steptoe, A. L., Wani, S., Bethel, G., Robertson, A. J., Perkins, A. C., Bruce, S. J., Lee, C. C., Ranade, S. S., Peckham, H. E., Manning, J. M., McKernan, K. J. and Grimmond, S. M. (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 5, 613-619. https://doi.org/10.1038/nmeth.1223
  11. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621-628. https://doi.org/10.1038/nmeth.1226
  12. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344-1349. https://doi.org/10.1126/science.1158441
  13. Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O'Keeffe, S., Haas, S., Vingron, M., Lehrach, H. and Yaspo, M. L. (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956-960. https://doi.org/10.1126/science.1160342
  14. Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C. J., Rogers, J. and Bahler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239-1243. https://doi.org/10.1038/nature07002
  15. Cao, X. and Sudhof, T. C. (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J. Biol. Chem. 279, 24601-24611. https://doi.org/10.1074/jbc.M402248200
  16. Cao, X. and Sudhof, T. C. (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115-120. https://doi.org/10.1126/science.1058783
  17. Filali, M., Lalonde, R. and Rivest, S. (2009) Cognitive and non-cognitive behaviors in an APPswe/PS1 bigenic model of Alzheimer's disease. Genes Brain Behav. 8, 143-148. https://doi.org/10.1111/j.1601-183X.2008.00453.x
  18. Kim, H. S., Kim, E. M., Lee, J. P., Park, C. H., Kim, S., Seo, J. H., Chang, K. A., Yu, E., Jeong, S. J., Chong, Y. H. and Suh, Y. H. (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J. 17, 1951-1953. https://doi.org/10.1096/fj.03-0106fje
  19. Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., Ring, S., D'Adamio, L., Shen, J., Muller, U., St George Hyslop, P. and Checler, F. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46, 541-554. https://doi.org/10.1016/j.neuron.2005.04.008
  20. von Rotz, R. C., Kohli, B. M., Bosset, J., Meier, M., Suzuki, T., Nitsch, R. M. and Konietzko, U. (2004) The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J. Cell. Sci. 117, 4435-4448. https://doi.org/10.1242/jcs.01323
  21. Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K. and Rosenfeld, M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110, 55-67. https://doi.org/10.1016/S0092-8674(02)00809-7
  22. Huysseune, S., Kienlen-Campard, P., Hebert, S., Tasiaux, B., Leroy, K., Devuyst, O., Brion, J. P., De Strooper, B. and Octave, J. N. (2009) Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. FASEB J. 23, 4158-4167. https://doi.org/10.1096/fj.09-140012
  23. Lambert, J. C., Wavrant-De Vrieze, F., Amouyel, P. and Chartier-Harlin, M. C. (1998) Association at LRP gene locus with sporadic late-onset Alzheimer's disease. Lancet 351, 1787-1788. https://doi.org/10.1016/S0140-6736(05)78749-3
  24. Qian, W., Shi, J., Yin, X., Iqbal, K., Grundke-Iqbal, I., Gong, C. X. and Liu, F. (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J. Alzheimers Dis. 19, 1221-1229. https://doi.org/10.3233/JAD-2010-1317
  25. Zhang, H., Sun, S., Herreman, A., De Strooper, B. and Bezprozvanny, I. (2010) Role of presenilins in neuronal calcium homeostasis. J. Neurosci. 30, 8566-8580. https://doi.org/10.1523/JNEUROSCI.1554-10.2010
  26. Lindsey, J. C., Lusher, M. E., Anderton, J. A., Gilbertson, R. J., Ellison, D. W. and Clifford, S. C. (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br. J. Cancer 97, 267-274. https://doi.org/10.1038/sj.bjc.6603852

피인용 문헌

  1. Anti-amyloidogenic effects of glycosphingolipid synthesis inhibitors occur independently of ganglioside alterations vol.75, 2016, https://doi.org/10.1016/j.mcn.2016.06.009
  2. Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells vol.52, pp.3, 2015, https://doi.org/10.1007/s12035-014-8906-3
  3. Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells vol.132, pp.6, 2015, https://doi.org/10.1111/jnc.12984
  4. Regulation of global gene expression and cell proliferation by APP vol.6, pp.1, 2016, https://doi.org/10.1038/srep22460
  5. Amyloid Beta-Mediated Epigenetic Alteration of Insulin-Like Growth Factor Binding Protein 3 Controls Cell Survival in Alzheimer's Disease vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099047
  6. Expression of Amyloid-β Protein and Amyloid-β Precursor Protein After Primary Brain-Stem Injury in Rats vol.35, pp.3, 2014, https://doi.org/10.1097/PAF.0000000000000103
  7. Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation vol.49, pp.1, 2016, https://doi.org/10.5483/BMBRep.2016.49.1.102
  8. Alterations of Cyclin dependent kinase 5 expression and phosphorylation in Amyloid precursor protein (APP)-transfected PC12 cells vol.585, pp.8, 2011, https://doi.org/10.1016/j.febslet.2011.03.058
  9. Ganglioside and related-sphingolipid profiles are altered in a cellular model of Alzheimer's disease vol.137, 2017, https://doi.org/10.1016/j.biochi.2017.03.019
  10. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line vol.414, pp.4, 2011, https://doi.org/10.1016/j.bbrc.2011.09.136
  11. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease vol.24, pp.3, 2013, https://doi.org/10.1007/s12640-013-9407-2
  12. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer’s Disease vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0153156
  13. SUMO: a (Oxidative) Stressed Protein vol.15, pp.4, 2013, https://doi.org/10.1007/s12017-013-8266-6
  14. Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation vol.18, pp.2, 2014, https://doi.org/10.4196/kjpp.2014.18.2.155
  15. The amyloid precursor protein: A biochemical enigma in brain development, function and disease vol.587, pp.13, 2013, https://doi.org/10.1016/j.febslet.2013.05.010
  16. SIRT3 activator Honokiol attenuates β-Amyloid by modulating amyloidogenic pathway vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0190350