DOI QR코드

DOI QR Code

Susceptibility for breast cancer in young patients with short rare minisatellite alleles of BORIS

  • Yoon, Se-Lyun (Department of Biology and Biomedical Science, Dong-A University) ;
  • Kim, Dae-Cheol (Department of Patholgy, Dong-A University College of Medicine) ;
  • Cho, Se-Heon (Department of Surgery, Dong-A University College of Medicine) ;
  • Lee, Sang-Yeop (Department of Biology and Biomedical Science, Dong-A University) ;
  • Chu, In-Sun (Bioinformation Center, KRIBB) ;
  • Heo, Jeong-Hoon (Department of Molecular Biology and Immunology, Kosin University College of Medicine) ;
  • Leem, Sun-Hee (Department of Biology and Biomedical Science, Dong-A University)
  • Received : 2010.07.23
  • Accepted : 2010.09.08
  • Published : 2010.10.31

Abstract

In this study, we characterized two blocks of minisatellites in the 5' upstream region of the BORIS gene (BORIS-MS1, -MS2). BORIS-MS2 was found to be polymorphic; therefore, this locus could be useful as a marker for DNA fingerprinting. We assessed the association between BORIS-MS2 and breast cancer by a case-control study with 428 controls and 793 breast cancers cases. Rare alleles in the younger group (age, <40) were associated with a statistically significant increased risk of breast cancer (odds ratio, 4.84; 95% confidence interval, 1.06-22.22; and P = 0.026). A statistically significant association between the short rare alleles and cancer was identified in the younger group (8.02; 1.01-63.83; P = 0.021). Kaplan-Meier estimates showed that poor prognosis was associated with patients who contained the rare alleles. Our data suggest that the short rare alleles of BORIS-MS2 could be used to identify the risk for breast cancer in young patients.

Keywords

References

  1. Loukinov, D. I., Pugacheva, E., Vatolin, S., Pack, S. D., Moon, H., Chernukhin, I., Mannan, P., Larsson, E., Kanduri, C., Vostrov, A. A., Cui, H., Niemitz, E. L., Rasko, J. E., Docquier, F. M., Kistler, M., Breen, J. J., Zhuang, Z., Quitschke, W. W., Renkawitz, R., Klenova, E. M., Feinberg, A. P., Ohlsson, R., Morse, H. C. III. and Lobanenkov, V. V. (2002) BORIS, a novel male germline-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc. Natl. Acad. Sci. U.S.A. 99, 6806-6811. https://doi.org/10.1073/pnas.092123699
  2. Vatolin, S., Abdullaev, Z., Pack, S. D., Flanagan, P. T., Custer, M., Loukinov, D. I., Pugacheva, E., Hong, J. A., Morse, H. III., Schrump, D. S., Risinger, J. I., Barrett, J. C. and Lobanenkov, V. V. (2005) Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res. 65, 7751-7762. https://doi.org/10.1158/0008-5472.CAN-05-0858
  3. Risinger, J. I., Chandramouli, G. V., Maxwell, G. L., Custer, M., Pack, S., Loukinov, D., Aprelikova, O., Litzi, T., Schrump, D. S., Murphy, S. K., Berchuck, A., Lobanenkov, V. and Barrett, J. C. (2007) Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression. Clin. Cancer Res. 13, 1713-1719. https://doi.org/10.1158/1078-0432.CCR-05-2569
  4. D'Arcy, V., Pore, N., Docquier, F., Abdullaev, Z. K., Chernukhin, I., Kita, G. X., Rai, S., Smart, M., Farrar, D., Pack, S., Lobanenkov, V. and Klenova, E. (2008) BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours. Br. J. Cancer 98, 571-579. https://doi.org/10.1038/sj.bjc.6604181
  5. Hong, J. A., Kang, Y., Abdullaev, Z., Flanagan, P. T., Pack, S. D., Fischette, M. R., Adnani, M. T, Loukinov, D. I, Vatolin, S., Risinger, J. I., Custer, M., Chen, G. A., Zhao, M., Nguyen, D. M., Barrett, J. C., Lobanenkov, V. V. and Schrump, D. S. (2005) Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res. 65, 7763-7774. https://doi.org/10.1158/0008-5472.CAN-05-0823
  6. D'Arcy, V., Abdullaev, Z. K., Pore, N., Docquier, F., Torrano, V., Chernukhin, I., Smart, M., Farrar, D., Metodiev, M., Fernandez, N., Richard, C., Delgado, M. D., Lobanenkov, V. and Klenova, E. (2006) The potential of BORIS detected in the leukocytes of breast cancer patients as an early marker of tumorigenesis. Clin. Cancer Res. 12, 5978-5986. https://doi.org/10.1158/1078-0432.CCR-05-2731
  7. NHS breast cancer screening programmes. Breast cancer. (2009) Available at http://www.cancer screening.nhs.uk/breastscreen/breastcancer.html#incidence. Paragraph 1.2.
  8. Kim, H. A., Shin, D. S., Moon, N. M., Paik, N. S. and Noh, W. C. (2009) The incidence of chemotherapy-induced amenorrhea and recovery in young (<45-year-old) breast cancer patients. J. Breast Cancer 12, 20-26. https://doi.org/10.4048/jbc.2009.12.1.20
  9. Hankey, B. F., Miller, B., Curtis, R. and Kosary, C. (1994) Trends in breast cancer in younger women in contrast to older women. J. Natl. Cancer Inst. Monogr. 16, 7-14.
  10. Ahn, S. H. and Yoo, K. Y. (2006) The Korean breast cancer society, chronological changes of clinical characteristics in 31,115 new breast cancer patients among Koreans during 1996-2004. Breast Cancer Res. Treat. 99, 209-214. https://doi.org/10.1007/s10549-006-9188-x
  11. Gong, G. Y., Kim, M. J., Shim, Y. H., Kang, G. H., Ahn, S. H. and Ro, J. Y. (2006) Nationwide Korean breast cancer data of 2004 using breast cancer registration program. J. Breast Cancer 9, 151-161. https://doi.org/10.4048/jbc.2006.9.2.151
  12. de la Rochefordiere, A., Asselain, B., Campana, F., Scholl, S. M., Fenton, J., Vilcoq, J. R., Durand, J. C., Pouillart, P., Magdelenat, H. and Fourquet, A. (1993) Age as prognostic factor in premenopausal breast carcinoma. Lancet 341, 1039-1043. https://doi.org/10.1016/0140-6736(93)92407-K
  13. Nixon, A. J., Neuberg, D., Hayes, D. F., Gelman, R., Connolly, J. L., Schnitt, S., Abner, A., Recht, A., Vicini, F. and Harris, J. R. (1994) Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J. Clin. Oncol. 12, 888-894. https://doi.org/10.1200/JCO.1994.12.5.888
  14. Xiong, Q., Valero, V., Kau, V., Kau, S. W., Taylor, S., Smith, T. L., Buzdar, A. U., Hortobagyi, G. N. and Theriault, R. L. (2001) Female patients with breast carcinoma age 30 years and younger have a poor prognosis: the M. D. Anderson Cancer Center experience. Cancer 92, 2523-2528. https://doi.org/10.1002/1097-0142(20011115)92:10<2523::AID-CNCR1603>3.0.CO;2-6
  15. Ahn, S. H., Son, B. H., Kim, S. W., Kim, S. I., Jeong, J., Ko, S. S. and Han, W. (2007) Poor outcome of hormone receptor- positive breast cancer at very young age is due to tamoxifen resistance: nationwide survival data in Korea-a report from the Korean breast cancer society. J. Clin. Oncol. 25, 2360-2368. https://doi.org/10.1200/JCO.2006.10.3754
  16. Bailly, S., Israel, N., Fay, M., Gougerot-Pocidano, M. A. and Duff, G. W. (1996) An intronic polymorphic repeat sequence modulates interleukin-alpha gene expression. Mol. Immunol. 12, 999-1006.
  17. Nakamura, Y., Koyama, K. and Matsushima, M. (1998) VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J. Hum. Genet. 43, 149-152. https://doi.org/10.1007/s100380050059
  18. Fiskerstrand, C. E., Lovejoy, E. A. and Quinn, J. P. (1999) An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Lett. 458, 171-174. https://doi.org/10.1016/S0014-5793(99)01150-3
  19. MacKenzie, A. and Quinn, J. (1999) A serotonin transporter gene intron 2 polymorphic region, correlation with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc. Natl. Acad. Sci. U.S.A. 96, 15251-15255. https://doi.org/10.1073/pnas.96.26.15251
  20. Leem, S. H., Londono-Vallejo, J. A., Kim, J. H., Bui, H., Tubacher, E., Solomon, G., Park, J. E., Horikawa, I., Kouprina, N., Barrett, J. C. and Larionov, V. (2002) The human telomerase gene: complete genomic sequence and analysis of tandem repeat polymorphisms in intronic regions. Oncogene 21, 769-777. https://doi.org/10.1038/sj.onc.1205122
  21. Leem, S. H., Kouprina, N., Grimwood, J., Kim, J. H., Mullokandov, M., Yoon, Y. H., Chae, J. Y., Morgan, J., Lucas, S., Richardson, P., Detter, C., Glavina, T., Rubin, E., Barrett, J. C. and Larionov, V. (2004) Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements. Genome Res. 14, 239-246. https://doi.org/10.1101/gr.1929904
  22. Jeong, Y. H., Kim, M. C., Ahn, E. K., Seol, S. Y., Do, E. J., Choi, H. J., Chu, I. S., Kim, W. J., Kim, W. J., Sunwoo, Y. and Leem, S. H. (2007) Rare exonic minisatellite alleles in MUC2 Influence Susceptibility to Gastric Carcinoma. PLoS One 11, e1163.
  23. Seol, S. Y., Lee, S. Y., Kim, Y. D., Do, E. J., Kwon, J. A., Kim, S. I., Chu, I. S. and Leem, S. H. (2008) Minisatellite polymorphisms of the SLC6A19: susceptibility in hypertension. Biochem. Biophys. Res. Commun. 374, 714-719. https://doi.org/10.1016/j.bbrc.2008.07.094
  24. Yoon, Y. H., Seol, S. Y., Heo, J., Chung, C. N., Park, I. H. and Leem, S. H. (2008) Analysis of VNTRs in the solute carrier family 6, member 18 (SLC6A18) gene and essential hypertension. DNA and Cell Biol. 27, 559-567. https://doi.org/10.1089/dna.2008.0755
  25. Choi, Y. J., Kook, S. H., Kwang, H. J. and Park, Y. L. (2009) Imaging and clinicopathologic characteristics of breast cancers in younger group compared to in old group. J. Breast Cancer 12, 79-84. https://doi.org/10.4048/jbc.2009.12.2.79
  26. Zhou, F. F., Xia, L. P., Guo, G. F., Wang, X., Yuan, Z. Y., Zhang, B. and Wang, F. (2010) Changes in therapeutic strategies in Chinese male patients with breast cancer: 40 years of experience in a single institute. Breast doi:10.1016. https://doi.org/10.1016
  27. McAree, B., O'Donnell, M. E., Spence, A., Lioe, T. F., McManus, D. T. and Spence, R. A. (2010) Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland. Breast. 19, 97-104. https://doi.org/10.1016/j.breast.2009.12.002
  28. Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic. Acids. Res. 27, 573-580. https://doi.org/10.1093/nar/27.2.573
  29. Chakravarti, A. and Lynn, A. (1999) Meiotic mapping in human; in Genome analysis: a laboratory manual, Birren, B., Green, E. D., Klapholz, S., Myers, R. M., Roskams. (eds.), pp. 1-69, Cold Spring Harbor Laboratory Press, New York, USA.

Cited by

  1. Expression of the Epigenetic factor BORIS (CTCFL) in the Human Genome vol.9, pp.1, 2011, https://doi.org/10.1186/1479-5876-9-213
  2. Variants of BORIS minisatellites and relation to prognosis of prostate cancer vol.33, pp.1, 2011, https://doi.org/10.1007/s13258-010-0111-9
  3. Apicidin and Docetaxel Combination Treatment Drives CTCFL Expression and HMGB1 Release Acting as Potential Antitumor Immune Response Inducers in Metastatic Breast Cancer Cells vol.14, pp.9, 2012, https://doi.org/10.1593/neo.121020
  4. Association of MUC6-minisatellite variants with susceptibility to rectal carcinoma vol.40, pp.1, 2013, https://doi.org/10.1007/s11033-012-2062-5
  5. BORIS in human cancers – A review vol.48, pp.6, 2012, https://doi.org/10.1016/j.ejca.2011.09.009
  6. Analysis of Promoter Methylation and Polymorphic Minisatellites ofBORISand Lack of Association with Gastric Cancer vol.30, pp.9, 2011, https://doi.org/10.1089/dna.2011.1248
  7. A polymorphic minisatellite region of BORIS regulates gene expression and its rare variants correlate with lung cancer susceptibility vol.48, pp.7, 2016, https://doi.org/10.1038/emm.2016.50
  8. Association between the length of the MUC8-minisatellite 5 region and susceptibility to chronic obstructive pulmonary disease (COPD) vol.40, pp.1, 2018, https://doi.org/10.1007/s13258-017-0630-8
  9. Short rare minisatellite variant of BORIS-MS2 is related to bladder cancer susceptibility pp.2092-9293, 2019, https://doi.org/10.1007/s13258-018-0771-4