DOI QR코드

DOI QR Code

PSEUDO SYMMETRIC AND PSEUDO RICCI SYMMETRIC WARPED PRODUCT MANIFOLDS

  • 투고 : 2009.10.16
  • 발행 : 2010.10.31

초록

We study pseudo symmetric (briefly $(PS)_n$) and pseudo Ricci symmetric (briefly $(PRS)_n$) warped product manifolds $M{\times}_FN$. If M is $(PS)_n$, then we give a condition on the warping function that M is a pseudosymmetric space and N is a space of constant curvature. If M is $(PRS)_n$, then we show that (i) N is Ricci symmetric and (ii) M is $(PRS)_n$ if and only if the tensor T defined by (2.6) satisfies a certain condition.

키워드

참고문헌

  1. T. Adati and T. Miyazawa, On Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967), 348–354.
  2. E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214–264.
  3. M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53–58.
  4. M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15 (1988), no. 6, 526–531.
  5. M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113–122.
  6. U. C. De and S. Bandyopadhyay, On weakly conformally symmetric spaces, Publ. Math. Debrecen 57 (2000), no. 1-2, 71–78.
  7. U. C. De and H. A. Biswas, On pseudo-conformally symmetric manifolds, Bull. Calcutta Math. Soc. 85 (1993), no. 5, 479–486.
  8. U. C. De and A. K. Gazi, On almost pseudo conformally symmetric manifolds, Demonstratio Math. 42 (2009), no. 4, 869–886.
  9. R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A 44 (1992), no. 1, 1–34.
  10. A. Gebarowski, Nearly conformally symmetric warped product manifolds, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 359–377.
  11. B. O’Neill, Semi-Riemannian Geometry with Applications to the Relativity, Academic Press, New York-London, 1983.
  12. R. N. Sen and M. C. Chaki, On curvature restrictions of a certain kind of conformallyflat Riemannian space of class one, Proc. Nat. Inst. Sci. India Part A 33 (1967), 100–102.
  13. G. Soos, Uber die geodatischen Abbildungen von Riemannschen Raumen auf projektivsymmetrische Riemannsche Raume, Acta Math. Acad. Sci. Hungar. 9 (1958), 359–361.
  14. L. Tamassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Differential geometry and its applications (Eger, 1989), 663–670, Colloq. Math. Soc. Janos Bolyai, 56, North-Holland, Amsterdam, 1992.
  15. A. G. Walker, On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36–64.

피인용 문헌

  1. On φ-pseudo Symmetries of (LCS)n-Manifolds vol.53, pp.2, 2013, https://doi.org/10.5666/KMJ.2013.53.2.285
  2. Einstein-like warped product manifolds 2017, https://doi.org/10.1142/S0219887817501663