IMPLICIT ITERATION PROCESS FOR COMMON FIXED POINTS OF AN INFINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES

Shif-sen Chang, Yeol Je Cho, and Jong Kyu Kim

Abstract

Some convergence theorems for approximating to a common fixed point of an infinite family of strictly pseudocontractive mappings of Browder-Petryshyn type are proved in the setting of Banach spaces by using a new composite implicit iterative process with errors. The results presented in the paper generalize and improve the main results of Bai and Kim [1], Gu [4], Osilike [5], Su and Li [7], and Xu and Ori [8].

1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, E^{*} is the dual space of E and $J: E \rightarrow E^{*}$ is the normalized duality mapping defined by

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}, \quad \forall x \in E .
$$

Recall that a mapping T with domain $D(T)$ and range $R(T)$ in E is said to be semi-compact if, for any bounded sequence $\left\{x_{n}\right\} \subset D(T)$ such that $\| x_{n}-$ $T x_{n} \| \rightarrow 0 \quad(n \rightarrow \infty)$, there exists a subsequence $\left\{x_{n_{i}}\right\}$ such that $x_{n_{i}} \rightarrow x^{*} \in$ $D(T)$. A mapping $T: D(T) \rightarrow R(T)$ is said to be λ-strictly pseudocontractive in the terminology of Browder-Petryshyn [2] if there exists a constant $\lambda \in(0,1)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}-\lambda\|x-y-(T x-T y)\|^{2} \tag{1.1}
\end{equation*}
$$

for all $x, y \in D(T)$ and $j(x-y), \in J(x-y)$. (1.1) can be written as

$$
\begin{equation*}
\langle(I-T) x-(I-T y), j(x-y)\rangle \geq \lambda \|(I-T) x-(I-T) y) \|^{2} \tag{1.2}
\end{equation*}
$$

It is easy to see that each λ-strictly pseudocontractive mapping is L-Lipschitzian continuous. Indeed, it follows from (1.2) that

$$
\lambda \|(I-T) x-(I-T) y)\left\|^{2} \leq\right\| x-y-(T x-T y)\| \| x-y \|
$$

Received October 7, 2009.
2000 Mathematics Subject Classification. 47H02, 60H25.
Key words and phrases. strictly pseudocontractive mapping of Browder-Petryshyn type, implicit iteration process with errors, common fixed point.

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2009-0076898).

Therefore, we have

$$
\lambda \|(I-T) x-(I-T) y)\|\leq\| x-y \| .
$$

Again, since

$$
\begin{equation*}
\lambda(\|T x-T y\|-\|x-y\|) \leq \lambda \|(I-T) x-(I-T) y) \|, \tag{1.3}
\end{equation*}
$$

this implies that

$$
\begin{equation*}
\|T x-T y\| \leq L\|x-y\|, \tag{1.4}
\end{equation*}
$$

where $L=1+\frac{1}{\lambda}$.
Concerning the convergence problem of implicit iterative processes to approximating a common fixed point for a finite family of strictly pseudocontractive mappings of Browder-Petryshyn type in the setting of Hilbert spaces or Banach spaces have been considered by several authors (see, for example, [1, 2, 4-8]).

In this paper, we introduce the following new implicit iteration process with errors for an infinite family of strictly pseudocontractive mappings of BrowderPetryshyn type:

$$
\left\{\begin{array}{l}
x_{0} \in K \tag{1.5}\\
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T_{n} y_{n}+\gamma_{n} u_{n}, \\
y_{n}=\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x_{n}+\delta_{n} v_{n}, \quad \forall n \geq 1
\end{array}\right.
$$

where K is a nonempty closed convex subset of a real Banach space $E,\left\{T_{n}\right\}$ is an infinite family of strictly pseudocontractive mappings $T_{n}: K \rightarrow K$ of Browder-Petryshyn type, $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ are sequences in $[0,1]$ with $\alpha_{n}+\gamma_{n} \leq 1, \beta_{n}+\delta_{n} \leq 1$ and $\left\{u_{n}\right\},\left\{v_{n}\right\}$ are two bounded sequences in K.

Observe that, if K is a nonempty closed convex subset of E and $T_{n}: K \rightarrow$ K is a λ_{n}-strictly pseudocontractive mapping, then it is a L_{n}-Lipschitzian mapping with $L_{n}=1+\frac{1}{\lambda_{n}}$. Hence, for any $x_{n-1}, \gamma_{n} u_{n}, \delta_{n} v_{n} \in K$, the mapping $S_{n}: K \rightarrow K$ defined by

$$
\begin{aligned}
S_{n}(x)= & \left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1} \\
& +\alpha_{n} T_{n}\left\{\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x+\delta_{n} v_{n}\right\}+\gamma_{n} u_{n}, \quad \forall n \geq 1,
\end{aligned}
$$

satisfies the following:

$$
\begin{aligned}
\left\|S_{n} x-S_{n} y\right\|= & \alpha_{n} \| \\
\quad & T_{n}\left\{\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x_{n}+\delta_{n} v_{n}\right\} \\
& \quad-T_{n} x\left\{\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\alpha_{n} T_{n} y+\gamma_{n} v_{n}\right\} \| \\
\leq & \alpha_{n} L_{n}\left\|\beta_{n}\left(T_{n} x-T_{n} y\right)\right\| \\
\leq & \alpha_{n} \beta_{n} L_{n}^{2}\|x-y\|, \quad \forall x, y \in K .
\end{aligned}
$$

This shows that, if $\alpha_{n} \beta_{n} L_{n}^{2}<1$, then $S_{n}: K \rightarrow K$ is a contractive mapping. By Banach contraction principle, there exists a unique fixed point $x_{n} \in K$ such
that

$$
\left\{\begin{array}{l}
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T_{n} y_{n}+\gamma_{n} u_{n}, \\
y_{n}=\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x_{n}+\delta_{n} v_{n}, \quad \forall n \geq 1 .
\end{array}\right.
$$

Therefore, if $\alpha_{n} \beta_{n} L_{n}^{2}<1$ for all $n \geq 1$, then the iterative sequence (1.5) can be employed for the approximation of common fixed points of an infinite family of strictly pseudocontractive mappings.

The purpose of this paper is to investigate the convergence problem of approximating to a common fixed point of an infinite family of strictly pseudocontractive mappings of Browder-Petryshyn type in an arbitrary real Banach space by this new iteration sequence (1.5). The results presented in the paper generalize and improve the results in Gu [4], Osilike [5], Su and Li [7], Xu and Ori [8].

In order to prove the main results of this paper, we need the following lemmas.

Lemma 1.1. Let E be a real Banach space, K be a nonempty closed convex subset of $E, T_{n}: K \rightarrow K, n=1,2, \ldots$, be a λ_{n}-strictly pseudocontractive mappings of Browder-Petryshyn type. If $\xi=\inf _{n \geq 1} \lambda_{n}>0$, then we have the following:
(1) $\left\{T_{n}\right\}$ is an infinite family of uniformly ξ-strictly pseudocontractive and uniformly L-Lipschitzian with $L=1+\frac{1}{\xi}$, i.e., for all $x, y \in K$ and $j(x-y) \in$ $J(x-y)$,
(1.6) $\left\langle T_{n} x-T_{n} y, j(x-y)\right\rangle \leq\|x-y\|^{2}-\xi\left\|x-y-\left(T_{n} x-T_{n} y\right)\right\|^{2}, \quad \forall n \geq 1$, and

$$
\begin{equation*}
\left\|T_{n} x-T_{n} y\right\| \leq L\|x-y\| \tag{1.7}
\end{equation*}
$$

where $L=1+\frac{1}{\xi}$ for all $n \geq 1$.
(2) If $F=\bigcap_{n=1}^{\infty} F\left(T_{n}\right)$ (the set of common fixed points of $\left\{T_{n}\right\}$) is nonempty, then F is a closed set in K.

Proof. (1) For each $n=1,2, \ldots$, since T_{n} is a λ_{n}-strictly pseudocontractive mapping, we have

$$
\begin{aligned}
\left\langle T_{n} x-T_{n} y, j(x-y)\right\rangle & \leq\|x-y\|^{2}-\lambda_{n}\left\|x-y-\left(T_{n} x-T_{n} y\right)\right\|^{2} \\
& \leq\|x-y\|^{2}-\xi\left\|x-y-\left(T_{n} x-T_{n} y\right)\right\|^{2}
\end{aligned}
$$

for all $x, y \in K$ and $j(x-y) \in J(x-y)$. The conclusion (1.6) is proved.
Again, by (1.4), for each $n=1,2, \ldots$, we have

$$
\left\|T_{n} x-T_{n} y\right\| \leq L_{n}\|x-y\| \leq L\|x-y\|, \quad \forall n \geq 1,
$$

where $L_{n}=1+\frac{1}{\lambda_{n}}$ and $L=1+\frac{1}{\xi}$.
(2) Let $\left\{x_{n}\right\} \subset F$ be any sequence such that $x_{n} \rightarrow p$. Now, we prove that $p \in F$. In fact, for any $i=1,2, \ldots$, from (1.7), it follows that

$$
\begin{aligned}
\left\|p-T_{i} p\right\| & \leq\left\|p-x_{n}\right\|+\left\|x_{n}-T_{i} p\right\| \\
& =\left\|p-x_{n}\right\|+\left\|T_{i} x_{n}-T_{i} p\right\| \\
& \leq(1+L)\left\|p-x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

which implies that $p \in F\left(T_{i}\right)$ for all $i \geq 1$, i.e., $p \in F$. The conclusion of Lemma 1.1 is proved.

Lemma 1.2 ([6]). Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying the following condition:

$$
a_{n+1} \leq\left(1+b_{n}\right) a_{n}+c_{n}, \quad \forall n \geq n_{0}
$$

where n_{0} is some nonnegative integer such that $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<$ ∞. Then the limit $\lim _{n \rightarrow \infty} a_{n}$ exists.

In addition, if there exists a subsequence $\left\{a_{n_{i}}\right\} \subset\left\{a_{n}\right\}$ such that $a_{n_{i}} \rightarrow 0$, then $a_{n} \rightarrow 0 \quad(n \rightarrow \infty)$.

Lemma 1.3 ([3]). Let E be a real Banach space and J be the normalized duality mapping. Then, for any $x, y \in E$,

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y)
$$

2. Main results

We are now in a position to prove our main results in this paper.
Theorem 2.1. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T_{n}: K \rightarrow K, n=1,2, \ldots$, be an infinite family of λ_{n}-strictly pseudocontractive mappings with $F=\bigcap_{i=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$ (the set of common fixed points of $\left.\left\{T_{n}\right\}\right)$ and $0<\xi=\inf _{n \geq 1} \lambda_{n}<1$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ be sequences in $[0,1]$ satisfying the conditions $\alpha_{n}+\beta_{n} \leq 1$ and $\beta_{n}+\delta_{n} \leq 1$ for all $n \geq 1$, $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be two bounded sequences in K and $\left\{x_{n}\right\}$ be the iterative sequence with errors defined by (1.5). If the following conditions are satisfied:
(i) $\sum_{i=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{i=1}^{\infty}\left\{\alpha_{n}^{2}+\alpha_{n} \beta_{n}+\alpha_{n} \delta_{n}+\gamma_{n}\right\}<\infty$;
(iii) $\alpha_{n} \beta_{n} L^{2}<1$, where $L=1+\frac{1}{\xi}$,
then we have the following:
(1) The limit $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for any $p \in F$.
(2) $\liminf _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$.
(3) The sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point $x^{*} \in F$ if and only if

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0 \tag{2.1}
\end{equation*}
$$

where $d(x, F)$ denotes the distance from x to the set F, i.e.,

$$
d(x, F)=\inf _{y \in F}\|x-y\| .
$$

Proof. For any $p \in F$, it follows from Lemma 1.1, Lemma 1.3 and (1.5) that (2.2)

$$
\begin{aligned}
& \left\|x_{n}-p\right\|^{2} \\
= & \left\|\left(1-\alpha_{n}-\gamma_{n}\right)\left(x_{n-1}-p\right)+\alpha_{n}\left(T_{n} y_{n}-p\right)+\gamma_{n}\left(u_{n}-p\right)\right\| \\
\leq & \left(1-\alpha_{n}-\gamma_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n}\left\langle T_{n} y_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
& +2 \gamma_{n}\left\langle u_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n}\left\langle T_{n} y_{n}-T_{n} x_{n}, j\left(x_{n}-p\right)\right\rangle \\
& +2 \alpha_{n}\left\langle T_{n} x_{n}-p, j\left(x_{n}-p\right)\right\rangle+2 \gamma_{n}\left\langle u_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n}\left\|T_{n} y_{n}-T_{n} x_{n}\right\|\left\|x_{n}-p\right\| \\
& +2 \alpha_{n}\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2}+2 \gamma_{n}\left\|u_{n}-p\right\|\left\|x_{n}-p\right\| \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n} L\left\|y_{n}-x_{n}\right\|\left\|x_{n}-p\right\| \\
& +2 \alpha_{n}\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2}+\gamma_{n}\left(\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right) \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n} L\left\|y_{n}-x_{n}\right\|\left\|x_{n}-p\right\| \\
& +\left(2 \alpha_{n}+\gamma_{n}\right)\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2}+\gamma_{n} M,
\end{aligned}
$$

where $M=\sup _{n>1}\left\{\left\|u_{n}-p\right\|^{2},\left\|u_{n}-p\right\|,\left\|v_{n}-p\right\|,\left\|v_{n}-p\right\|^{2}\right\}$.
Now, we make an estimation for $\left\|y_{n}-x_{n}\right\|$. It follows from (1.5) and Lemma 1.1 that

$$
\begin{aligned}
& \left\|y_{n}-x_{n}\right\| \\
= & \left\|\left(1-\beta_{n}-\delta_{n}\right)\left(x_{n-1}-x_{n}\right)+\beta_{n}\left(T_{n} x_{n}-x_{n}\right)+\delta_{n}\left(v_{n}-x_{n}\right)\right\| \\
\leq & \left(1-\beta_{n}-\delta_{n}\right)\left\|x_{n-1}-x_{n}\right\|+\beta_{n}\left\|T_{n} x_{n}-x_{n}\right\|+\delta_{n}\left\|v_{n}-x_{n}\right\| \\
\leq & \left\|\left(\alpha_{n}+\gamma_{n}\right) x_{n-1}-\alpha_{n} T_{n} y_{n}-\gamma_{n} u_{n}\right\| \\
& +\beta_{n}\left(\left\|T_{n} x_{n}-p\right\|+\left\|x_{n}-p\right\|\right)+\delta_{n}\left(\left\|v_{n}-p\right\|+\left\|x_{n}-p\right\|\right) \\
\leq & \alpha_{n}\left\|x_{n-1}-T_{n} y_{n}\right\|+\gamma_{n}\left(x_{n-1}-u_{n}\right) \| \\
& +\beta_{n}(L+1)\left\|x_{n}-p\right\|+\delta_{n}\left(M+\left\|x_{n}-p\right\|\right) \\
\leq & \alpha_{n}\left(\left\|x_{n-1}-p\right\|+\left\|T_{n} y_{n}-p\right\|\right)+\gamma_{n}\left(\left\|x_{n-1}-p\right\|+\left\|u_{n}-p\right\|\right) \\
& +\left(\beta_{n}(L+1)+\delta_{n}\right)\left\|x_{n}-p\right\|+\delta_{n} M \\
\leq & \alpha_{n} L\left\|y_{n}-p\right\|+\left(\alpha_{n}+\gamma_{n}\right)\left\|x_{n-1}-p\right\| \\
& +\left(\beta_{n}(L+1)+\delta_{n}\right)\left\|x_{n}-p\right\|+\left(\delta_{n}+\gamma_{n}\right) M \\
\leq & \alpha_{n} L\left\{\left(1-\beta_{n}-\delta_{n}\right)\left\|x_{n-1}-p\right\|+\beta_{n}\left\|T_{n} x_{n}-p\right\|+\delta_{n}\left\|v_{n}-p\right\|\right\} \\
& +\left(\alpha_{n}+\gamma_{n}\right)\left\|x_{n-1}-p\right\|+\left(\beta_{n}(L+1)+\delta_{n}\right)\left\|x_{n}-p\right\| \\
& +\left(\delta_{n}+\gamma_{n}\right) M
\end{aligned}
$$

$$
\begin{aligned}
\leq & \alpha_{n} L\left\{\left\|x_{n-1}-p\right\|+\beta_{n} L\left\|x_{n}-p\right\|+\delta_{n} M\right\} \\
& +\left(\alpha_{n}+\gamma_{n}\right)\left\|x_{n-1}-p\right\|+\left(\beta_{n}(L+1)+\delta_{n}\right)\left\|x_{n}-p\right\| \\
& +\left(\delta_{n}+\gamma_{n}\right) M \\
\leq & \left\{\alpha_{n} L+\alpha_{n}+\gamma_{n}\right\}\left\|x_{n-1}-p\right\| \\
& +\left(\alpha_{n} \beta_{n} L^{2}+\beta_{n}(L+1)+\delta_{n}\right)\left\|x_{n}-p\right\|+\left(\alpha_{n} \delta_{n} L+\delta_{n}+\gamma_{n}\right) M .
\end{aligned}
$$

Substituting (2.3) into (2.2) and noting that

$$
2\left\|x_{n-1}-p\right\|\left\|x_{n}-p\right\| \leq\left\{\left\|x_{n-1}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right\}
$$

and

$$
2\left\|x_{n}-p\right\| \leq\left\{1+\left\|x_{n}-p\right\|^{2}\right\}
$$

we have

$$
\begin{align*}
& \left\|x_{n}-p\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2} \\
& +\alpha_{n} L\left(\alpha_{n} L+\alpha_{n}+\gamma_{n}\right)\left(\left\|x_{n-1}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right) \\
& +\left\{2 \alpha_{n} L\left(\alpha_{n} \beta_{n} L^{2}+\beta_{n}(L+1)+\delta_{n}\right)+\left(2 \alpha_{n}+\gamma_{n}\right)\right\}\left\|x_{n}-p\right\|^{2} \tag{2.4}\\
& +L \alpha_{n} M\left(\alpha_{n} \delta_{n} L+\gamma_{n}+\delta_{n}\right)\left(1+\left\|x_{n}-p\right\|^{2}\right) \\
& -2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2}+\gamma_{n} M .
\end{align*}
$$

Let

$$
\begin{align*}
\eta_{n}= & \alpha_{n} L\left(\alpha_{n} L+\alpha_{n}+\gamma_{n}\right)+2 \alpha_{n} L\left(\alpha_{n} \beta_{n} L^{2}+\beta_{n}(L+1)+\delta_{n}\right) \\
& +\gamma_{n}+L M \alpha_{n}\left(\alpha_{n} \delta_{n} L+\gamma_{n}+\delta_{n}\right) . \tag{2.5}
\end{align*}
$$

By the condition (ii), $\eta_{n} \rightarrow 0$ as $n \rightarrow \infty$. From (2.4), we have

$$
\begin{align*}
& \left(1-\eta_{n}-2 \alpha_{n}\right)\left\|x_{n}-p\right\|^{2} \\
\leq & \left\{\left(1-\alpha_{n}\right)^{2}+L \alpha_{n}\left(L \alpha_{n}+\alpha_{n}+\gamma_{n}\right)\right\}\left\|x_{n-1}-p\right\|^{2} \tag{2.6}\\
& +M\left\{L \alpha_{n}\left(\alpha_{n} \delta_{n} L+\gamma_{n}+\delta_{n}\right)+\gamma_{n}\right\}-2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2} .
\end{align*}
$$

Simplifying (2.6), we have

$$
\begin{align*}
& \left\|x_{n}-p\right\|^{2} \\
\leq & \left\{1+\frac{\alpha_{n}^{2}+\eta_{n}+L \alpha_{n}\left(L \alpha_{n}+\alpha_{n}+\gamma_{n}\right)}{\left(1-\eta_{n}-2 \alpha_{n}\right)}\right\}\left\|x_{n-1}-p\right\|^{2} \tag{2.7}\\
& +\frac{M\left\{L \alpha_{n}\left(\alpha_{n} \delta_{n} L+\gamma_{n}+\delta_{n}\right)+\gamma_{n}\right\}-2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2}}{\left(1-\eta_{n}-2 \alpha_{n}\right)} .
\end{align*}
$$

Since $\eta_{n} \rightarrow 0$ and $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists a positive integer n_{0} such that $\frac{1}{2}<1-\eta_{n}-2 \alpha_{n}<1$ for all $n \geq n_{0}$. Therefore, from (2.7), it follows that

$$
\begin{align*}
& \left\|x_{n}-p\right\|^{2} \tag{2.8}\\
\leq & \left\{1+2\left(\alpha_{n}^{2}+\eta_{n}+L \alpha_{n}\left(L \alpha_{n}+\alpha_{n}+\gamma_{n}\right)\right\}\left\|x_{n-1}-p\right\|^{2}\right. \\
& \left.+2 M\left\{L \alpha_{n}\left(\alpha_{n} \delta_{n} L+\gamma_{n}+\delta_{n}\right)+\gamma_{n}\right)\right\}-2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2}, \quad \forall n \geq n_{0} .
\end{align*}
$$

Letting

$$
\begin{aligned}
& b_{n}=2\left(\alpha_{n}^{2}+\eta_{n}+L \alpha_{n}\left(L \alpha_{n}+\alpha_{n}+\gamma_{n}\right),\right. \\
& \left.c_{n}=2 M\left\{L \alpha_{n}\left(\alpha_{n} \delta_{n} L+\gamma_{n}+\delta_{n}\right)+\gamma_{n}\right)\right\},
\end{aligned}
$$

by the condition (ii), we have $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<\infty$.
On the other hand, it follows from (2.8) that

$$
\begin{equation*}
\left\|x_{n}-p\right\|^{2} \leq\left(1+b_{n}\right)\left\|x_{n-1}-p\right\|^{2}+c_{n}, \quad \forall n \geq n_{0} . \tag{2.9}
\end{equation*}
$$

By Lemma 1.3, the limit $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Hence $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded. Without loss of generality, we can assume that

$$
\left\|x_{n}-p\right\| \leq B, \quad \forall n \geq 1
$$

Furthermore, it follows from (2.8) and (2.9) that
(2.10) $2 \alpha_{n} \xi\left\|T_{n} x_{n}-x_{n}\right\|^{2} \leq\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}+B b_{n}+c_{n}, \quad \forall n \geq n_{0}$.

Therefore, we have

$$
2 \xi \sum_{n=n_{0}}^{\infty} \alpha_{n}\left\|T_{n} x_{n}-x_{n}\right\|^{2} \leq\left\|x_{n_{0}-1}-p\right\|^{2}+B \sum_{n=n_{0}}^{\infty} b_{n}+\sum_{n=n_{0}}^{\infty} c_{n}<\infty .
$$

This implies that

$$
\sum_{n=1}^{\infty} \alpha_{n}\left\|T_{n} x_{n}-x_{n}\right\|^{2}<\infty
$$

Next, we prove that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|T_{n} x_{n}-x_{n}\right\|=0 \tag{2.11}
\end{equation*}
$$

In fact, suppose that the conclusion is not true. That is, if $\liminf _{n \rightarrow \infty} \| T_{n} x_{n}$ $-x_{n} \|=C>0$, then, for any $\varepsilon \in(0, C)$, there exists an positive n_{1} such that

$$
\left\|T_{n} x_{n}-x_{n}\right\|^{2}>(C-\varepsilon)^{2}, \quad \forall n \geq n_{1}
$$

Hence we have

$$
\infty=\sum_{n=n_{1}}^{\infty}(C-\varepsilon)^{2} \alpha_{n} \leq \sum_{n=n_{1}}^{\infty} \alpha_{n}\left\|T_{n} x_{n}-x_{n}\right\|^{2}<\infty
$$

This is a contradiction. Therefore, the conclusion (2.11) is proved.
Finally, we prove the conclusion (3). The necessity of condition (2.1) is obvious.

Now, we prove the sufficiency of the condition (2.1). Indeed, it follows from (2.9) that

$$
\begin{equation*}
\left\|x_{n}-p\right\|^{2} \leq\left(1+b_{n}\right)\left\|x_{n-1}-p\right\|^{2}+c_{n}, \quad \forall n \geq n_{0} \tag{2.12}
\end{equation*}
$$

where the sequences $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ satisfy $\sum_{n=1}^{\infty} b_{n}<\infty, \sum_{n=1}^{\infty} c_{n}<\infty$. Hence we have

$$
\begin{equation*}
\left(d\left(x_{n}, F\right)\right)^{2} \leq\left(1+b_{n}\right)\left(\left(d\left(x_{n-1}, F\right)\right)^{2}\right)+c_{n}, \quad \forall n \geq n_{0} . \tag{2.13}
\end{equation*}
$$

By Lemma 1.2, the condition (2.1) and (2.13), we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0 .
$$

Next, we prove that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. In fact, since $\sum_{n=1}^{\infty} b_{n}<$ ∞ and $1+t \leq \exp \{t\}$ for all $t>0$, by (2.12), we have

$$
\begin{equation*}
\left\|x_{n}-p\right\|^{2} \leq \exp \left\{b_{n}\right\}\left\|x_{n-1}-p\right\|^{2}+c_{n}, \quad \forall n \geq n_{0} . \tag{2.14}
\end{equation*}
$$

Hence, for any positive integers $n, m \geq n_{0}$, from (2.14), we have

$$
\begin{aligned}
& \left\|x_{n+m}-p\right\|^{2} \\
\leq & \exp \left\{b_{n+m}\right\}\left\|x_{n+m-1}-p\right\|^{2}+c_{n+m} \\
\leq & \exp \left\{b_{n+m}\right\}\left[\exp \left\{b_{n+m-1}\right\}\left\|x_{n+m-2}-p\right\|^{2}+c_{n+m-1}\right]+c_{n+m} \\
\leq & \exp \left\{b_{n+m}+b_{n+m-1}\right\}\left\|x_{n+m-2}-p\right\|^{2}+\exp \left\{b_{n+m}\right\} c_{n+m-1}+c_{n+m}
\end{aligned}
$$

$$
\begin{align*}
& \leq \exp \left\{\sum_{i=n+1}^{n+m} b_{i}\right\}\left\|x_{n}-p\right\|^{2}+\exp \left\{\sum_{i=n+2}^{n+m} b_{i}\right\} \sum_{i=n+1}^{n+m} c_{i} \tag{2.15}\\
& \leq Q\left(\left\|x_{n}-p\right\|^{2}+\sum_{i=n+1}^{n+m} c_{i}\right)
\end{align*}
$$

where $Q=\exp \left\{\sum_{n=1}^{\infty} b_{n}\right\}<\infty$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ and $\sum_{i=1}^{\infty} c_{i}<\infty$, for any given $\epsilon>0$, there exists a positive integer $n_{1} \geq n_{0}$ such that

$$
\left[d\left(x_{n}, F\right)\right]^{2}<\frac{\epsilon^{2}}{8(Q+1)}, \quad \sum_{i=n+1}^{n+m} c_{i}<\frac{\epsilon^{2}}{4 Q}, \quad \forall n \geq n_{1}
$$

Hence there exists $p_{1} \in F$ such that

$$
\begin{equation*}
\left\|x_{n}-p\right\|^{2}<\frac{\epsilon^{2}}{4(Q+1)}, \quad \forall n \geq n_{1} \tag{2.16}
\end{equation*}
$$

Consequently, it follows from (2.15) and (2.16) that, for any $n \geq n_{1}$ and $m \geq 1$,

$$
\begin{aligned}
\left\|x_{n+m}-x_{n}\right\|^{2} & \leq 2\left(\left\|x_{n+m}-p_{1}\right\|^{2}+\left\|x_{n}-p_{1}\right\|^{2}\right) \\
& \leq 2\left\{Q\left(\left\|x_{n}-p_{1}\right\|^{2}+\sum_{i=n+1}^{\infty} c_{i}\right)+\left\|x_{n}-p_{1}\right\|^{2}\right\} \\
& =2\left\{(1+Q)\left\|x_{n}-p_{1}\right\|^{2}+Q \sum_{i=n+1}^{\infty} c_{i}\right\} \\
& \leq 2\left(\frac{\epsilon^{2}}{4}+\frac{\epsilon^{2}}{4}\right)=\epsilon^{2} .
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. Since K is closed, let $x_{n} \rightarrow p \in K$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ and F is a closed subset by Lemma 1.1, we have $p \in F$. This completes the proof.

Taking $\gamma_{n}=0$ and $\delta_{n}=0$ for all $n \geq 1$ in Theorem 2.1, we can obtain the following theorem, which is a generalization of Su and $\mathrm{Li}[7$, Theorem 2.1] and the corresponding results of Osilike [5], Xu and Ori [8].

Theorem 2.2. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T_{n}: K \rightarrow K, n=1,2, \ldots$, be an infinite family of λ_{n}-strictly pseudocontractive mappings with $F=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$ and $0<\xi=$ $\inf _{n \geq 1} \lambda_{n}<1$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences in $[0,1]$ and $\left\{x_{n}\right\}$ be the iterative sequence defined by

$$
\left\{\begin{array}{l}
x_{0} \in K \tag{2.17}\\
x_{n}=\left(1-\alpha_{n}\right) x_{n-1}+\alpha_{n} T_{n} y_{n}, \\
y_{n}=\left(1-\beta_{n}\right) x_{n-1}+\beta_{n} T_{n} x_{n}, \quad \forall n \geq 1
\end{array}\right.
$$

If the following conditions are satisfied:
(i) $\sum_{i=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{i=1}^{\infty=1}\left\{\alpha_{n}^{2}+\alpha_{n} \beta_{n}\right\}<\infty$;
(iii) $\alpha_{n} \beta_{n} L^{2}<1$, where $L=1+\frac{1}{\xi}$,
then all the conclusions in Theorem 2.1 are still hold.
In Theorem 2.2, if $\beta_{n}=0$ for all $n \geq 1$, then we have the following result.
Theorem 2.3. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T_{n}: K \rightarrow K, n=1,2, \ldots$, be an infinite family of λ_{n}-strictly pseudocontractive mappings with $F=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$ and $0<$ $\xi=\inf _{n \geq 1} \lambda_{n}<1$. Let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ and $\left\{x_{n}\right\}$ be the iterative sequence defined by

$$
\left\{\begin{array}{l}
x_{0} \in K \tag{2.18}\\
x_{n}=\left(1-\alpha_{n}\right) x_{n-1}+\alpha_{n} T_{n} x_{n-1}, \quad \forall n \geq 1
\end{array}\right.
$$

If the following conditions are satisfied:
(i) $\sum_{i=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{i=1}^{\infty} \alpha_{n}^{2}<\infty$,
then all the conclusions in Theorem 2.1 still hold.
Theorem 2.4. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T: K \rightarrow K$ be a semi-compact λ-strictly pseudocontractive mappings with $F(T) \neq \emptyset$ (the set of common fixed points of T). Let $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ be sequences in $[0,1]$ satisfying the conditions $\alpha_{n}+\beta_{n} \leq 1$ and $\beta_{n}+\delta_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\},\left\{v_{n}\right\}$ be two bounded sequences in K and
$\left\{x_{n}\right\}$ be the iterative sequence with errors defined by

$$
\left\{\begin{array}{l}
x_{0} \in K \tag{2.19}\\
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T y_{n}+\gamma_{n} u_{n}, \\
y_{n}=\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T x_{n}+\delta_{n} v_{n}, \quad \forall n \geq 1
\end{array}\right.
$$

If the following conditions are satisfied:
(i) $\sum_{i=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{i=1}^{\infty}\left\{\alpha_{n}^{2}+\alpha_{n} \beta_{n}+\alpha_{n} \delta_{n}+\gamma_{n}\right\}<\infty$;
(iii) $\alpha_{n} \beta_{n} L^{2}<1$, where $L=1+\frac{1}{\lambda}$,
then the sequence $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.
Proof. By Theorem 2.1, we know that

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0
$$

and so there exists a subsequence $\left\{n_{k}\right\} \subset\{n\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n_{k}}-T x_{n_{k}}\right\|=0 \tag{2.20}
\end{equation*}
$$

By the semi-compactness of T, there exists a subsequence $\left\{x_{n_{i}}\right\} \subset\left\{x_{n_{k}}\right\}$ such that $\lim _{i \rightarrow \infty} x_{n_{i}}=x^{*}$. Hence it follows from (2.20) that $x^{*}=T x^{*}$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists, we know that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. This completes the proof.

References

[1] C. Bai and J. K. Kim, An implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings, Nonlinear Funct. Anal. Appl. 9 (2004), no. 4, 649-658.
[2] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
[3] S. S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30 (1997), no. 7, 4197-4208.
[4] F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, J. Math. Anal. Appl. 329 (2007), no. 2, 766-776.
[5] M. O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004), no. 1, 73-81.
[6] M. O. Osilike, S. C. Aniaghosor, and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Panamer. Math. J. 12 (2002), no. 2, 77-88.
[7] Y. F. Su and S. Li, Composite implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 320 (2006), no. 2, 882-891.
[8] H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), no. 5-6, 767-773.

Shih-sen Chang

Department of Mathematics
Yibin University
Yibin, Sichuan 644007, P. R. China
E-mail address: sszhang_1@yahoo.com.cn
Yeol Je Сho
Department of Mathematics Education and the RINS
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: yjcho@gsnu.ac.kr
Jong Kyu Kim
Department of Mathematics Education
Kyungnam University
Masan 631-701, Korea
E-mail address: jongkyuk@kyungnam.ac.kr

