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REPRESENTATION OF BOUNDED LINEAR OPERATORS
WITH EQUAL SPECTRAL PROJECTIONS AT ZERO

Yun Zhang and Dong-Jun Chen

Abstract. In this paper, we present the reprentation of all operators B
which are Drazin invertible and sharing the spectral projections at 0 with
a given Drazin invertible operator A. Meanwhile, some related results for
EP operators with closed range are obtained.

1. Introduction

As we see in [2], the Drazin inverse has proved helpful in analyzing Markov
chains, difference equations and iterative procedures. Applications could then
be made to denumerable Markov chains abstract Cauchy problems, infinite
systems of linear differential equations, and possibly differential equations.

Let H and K be complex separable Hilbert spaces. Denote by B(H,K) the
Banach space of all bounded linear operators from H into K. For an operator
A ∈ B(H,K), the symbols N(A) and R(A) will denote the null space and the
range space of A, respectively. Let A ∈ B(H)(= B(H,H)). The spectrum of A
is denoted by σ(A). If there exists an operator Y ∈ B(H) satisfied the following
relations

(1.1) AY = Y A, Y AY = Y, Ak+1Y = Ak,

then Y is called the Drazin inverse of A (see [1]) and denoted by AD. Recall that
asc(A)(des(A)), the ascent (descent) of A ∈ B(H), is the smallest non-negative
integer n such that N(An) = N(An+1) (R(An) = R(An+1)). If no such n exists,
then asc(A) = ∞ (des(A) = ∞). It is well known that asc(A) = des(A), if
asc(A) and des(A) are finite. An operator A ∈ B(H) has its Drazin inverse
AD if and only if it has finite ascent and descent. In such case i(A) = asc(A) =
des(A) = n. The spectral projection Aπ of A corresponding to 0 is the uniquely
determined idempotent operator with

(1.2) R(Aπ) = N(Ak), N(Aπ) = R(Ak).
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It is well-known that (see [4]) Aπ = I −AAD.
Recently, the characterization of all matrices B with eigenprojections at

zero or all operators B with the spectral projection at zero such that Bπ =
Aπ have been considered by many authors (see [5, 6, 7]). For given Drazin
invertible operator A ∈ B(H), the main purpose of this note is to determine
the representation of B ∈ B(H) with Bπ = Aπ.

In this note, using the technique of block operator matrices and solving
operator equations, expression of the set (Aπ)−1 = {B ∈ B(H) : Aπ = Bπ}
consisting of all such operators B is established and the characterization of all
matrices with same eigenprojections at zero obtained by N. Castro etc in [6]
are extended through to operators in B(H). It is worthy to point out that the
idea and methods used in this note are different from [6].

We start with several preliminary results that will be used later on.
If A ∈ B(H) has the Drazin inverse AD and i(A) = k, then (see [3]) R(Ak)

is a closed invariant subspace of A. Therefore A has the following operator
matrix

(1.3) A =
(

T11 T12

0 T22

)

with respect to the space decomposition H = R(Ak) ⊕ R(Ak)⊥, where ⊕ rep-
resents the orthogonal direct sum.

Lemma 1.1 (see [3]). Let A ∈ B(H) have the operator matrix form (1) and
i(A) = k. If A has the Drazin inverse AD, then

(1.4) AD =
(

T−1
11 Σk−1

i=0 T i−k−1
11 T12T

k−1−i
22

0 0

)

with respect to the space decomposition H = R(Ak)⊕R(Ak)⊥, where ⊕ repre-
sents the orthogonal direct sum.

The following well-known lemma indicates that the Drazin inverse of an
operator is similarly invariant.

Lemma 1.2. Let T ∈ B(H) with its Drazin inverse TD. If S ∈ B(H) is
invertible, then (STS−1)D = STDS−1.

2. Representation of the set (Aπ)−1

Now we state the main result of this section. We shall characterize the set

(Aπ)−1 = {B ∈ B(H) : Aπ = Bπ},
where A ∈ B(H) is a given operator and i(A) = k.

Theorem 2.1. Let A ∈ B(H) be a given operator and have the operator matrix
form (3) with i(A) = k. If B ∈ B(H) such that Aπ = Bπ, then

B =
(

B11 B11D −DB22

0 B22

)
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with respect to the space decomposition H = R(Ak) ⊕ R(Ak)⊥, where B11 ∈
B(R(Ak)) is invertible, B22 ∈ B(R((Ak)⊥) is nilpotent and

D =
k−1∑

i=0

T i−k
11 T12T

k−1−i
22 .

Proof. If A is invertible, then AD = A−1. The result holds. So we can assume
that A is not invertible below.

If A has the Drazin inverse AD and i(A) = k, by Lemma 1, then Aπ has the
operator matrix form

Aπ = I −AAD =
(

0 −D
0 I

)

with respect to the space decomposition H = R(Ak) ⊕ R(Ak)⊥, where D =∑k−1
i=0 T i−k

11 T12T
k−1−i
22 . Put

S =
(

I D
0 I

)
,

thus S is invertible and its inverse

S−1 =
(

I −D
0 I

)
.

By straight calculation, we have

SAπS−1 =
(

0 0
0 I

)
.

Suppose that

SBS−1 =
(

B11 B12

B21 B22

)
.

Since Aπ =Bπ, we have BAπ = AπB and so SBS−1SAπS−1 =SAπS−1SBS−1.
Thus we have(

B11 B12

B21 B22

)(
0 0
0 I

)
=

(
0 0
0 I

)(
B11 B12

B21 B22

)
.

Comparing the two sides of the above equation, we have B12 = 0 and B21 = 0.
Hence SBS−1 has the form SBS−1 = B11 ⊕B22, where B11 ∈ B(R(Ak)) and
B22 ∈ B(R(Ak)⊥). Suppose that

SBDS−1 =
(

X11 X12

X21 X22

)
.

Since SBDS−1SBBDS−1 = SBDS−1 and Aπ = Bπ, we have

SBDS−1SBBDS−1 = SBDS−1S(I −Aπ)S−1 = SBDS−1.

Thus (
X11 X12

X21 X22

)(
I 0
0 0

)
=

(
X11 X12

X21 X22

)
.
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Comparing the two sides of the above equation, we have X12 = 0 and X22 = 0.
Since SBDS−1SBS−1 = SBS−1SBDS−1 = S(I −Aπ)S−1, we have

(
X11 0
X21 0

) (
B11 0
0 B22

)
=

(
B11 0
0 B22

)(
X11 0
X21 0

)
=

(
I 0
0 0

)
.

Thus we have {
X11B11 = B11X11 = I,
X21B11 = 0.

Observing the above equation implies that B11 and X11 are invertible and so
X21 = 0. By Lemma 2, we have (SBS−1)D = SBDS−1. Thus BD

22 = 0 and so
B22 is nilpotent. Therefore SBS−1 = B11 ⊕ B22, where B11 is invertible and
B22 is nilpotent.

By straight calculation, we have

B =
(

B11 B11D −DB22

0 B22

)

and

BD =
(

B−1
11 B−1

11 D
0 0

)
,

with respect to the space decomposition H = R(Ak) ⊕ R(Ak)⊥, where B11 ∈
B(R(T k)) is invertible, B22 ∈ B(R((T k)⊥) is nilpotent and

D =
k−1∑

i=0

T i−k
11 T12T

k−1−i
22 .

¤

From the proof of the proceeding theorem, we obtain the following useful
property immediately.

Corollary 2.2. Let A,B ∈ B(H) and Aπ = Bπ. Thus there exists S ∈ B(H)
is invertible, such that

SAS−1 = A11 ⊕A22, SBS−1 = B11 ⊕B22,

where A11 and B11 are invertible, A22 and B22 are nilpotent.

Theorem 2.3. Let A ∈ B(H). The following conditions on B ∈ B(H) are
equivalent:

(1) Aπ = Bπ;
(2) AπB = BAπ, BAπ is nilpotent and B + Aπ is invertible;
(3) I + AD(B −A) is invertible, AπB = BAπ and BAπ is nilpotent.

Proof. (1) ⇒ (2) By Theorem 3, it is trivial.
(2) ⇒ (3) By Lemma 1, put S =

(
I −D
0 I

)
, thus

AD = S−1(T−1
11 ⊕ 0)S, Aπ = S−1(0⊕ I)S.

We observe that AπB = BAπ implies

B = S−1(B11 ⊕B22)S.
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Since BAπ is nilpotent and BAπ = S−1(0⊕B22)S, we have B22 is nilpotent.
Since both

B + Aπ = S−1(B11 ⊕ (B22 + I))S

and B22 + I are invertible, we have B11 is invertible.
By straight calculation,

I + AD(B −A) = ADB + Aπ

= S−1(T−1
11 ⊕ 0)SS−1(B11 ⊕B22)S + S−1(0⊕ I)S

= S−1(T−1
11 B11 ⊕ I)S.

Hence I + AD(B −A) is invertible.
(3) ⇒ (1) It is verified by a calculation. ¤

The following corollary indicates the connections between AD and BD when
Aπ = Bπ.

Corollary 2.4. Let A,B ∈ B(H) and Aπ = Bπ. Thus

BD = (I + AD(B −A))−1AD

and
BD −AD = AD(A−B)BD.

Proof. From the proof of the Theorem 2.3, it is trivial by straight calculation.
¤

Theorem 2.5. Let A,B ∈ B(H) and Aπ = Bπ. Thus

‖AD‖
1 + ‖AD(B −A)‖ ≤ ‖BD‖.

If ‖AD(B −A)‖ < 1, then

‖BD‖ ≤ ‖AD‖
1− ‖AD(B −A)‖

and
‖BD −AD‖
‖AD‖ ≤ ‖AD(B −A)‖

1− ‖AD(B −A)‖ .

Proof. By Corollary 2.4, we have AD = BD + AD(B−A)BD. Apply the norm
to AD = BD + AD(B −A)BD to obtain

‖ AD ‖ = ‖ BD + AD(B −A)BD ‖
≤ ‖ BD ‖ + ‖ AD(B −A)BD ‖
≤ ‖ BD ‖ + ‖ AD(B −A) ‖‖ BD ‖

and so
‖ AD ‖

1+ ‖ AD(B −A) ‖ ≤‖ BD ‖ .
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Moreover, suppose ‖AD(B−A)‖ < 1. Apply the norm to BD = AD+AD(A−
B)BD to obtain ‖BD‖ ≤ ‖AD‖+ ‖AD(A−B)‖‖BD‖ and consequently

‖BD‖ ≤ ‖AD‖
1− ‖AD(B −A)‖ .

Finally apply the norm to BD −AD = AD(A−B)BD to obtain

‖ BD −AD ‖ ≤ ‖ AD(B −A) ‖ (‖ AD ‖ + ‖ AD(A−B) ‖ BD ‖)
≤ ‖ AD(B −A) ‖ (‖ AD ‖ + ‖ AD(A−B) ‖ ‖AD‖

1−‖AD(B−A)‖ )

≤ ‖ AD ‖‖ AD(B −A) ‖ (1 + ‖AD(A−B)‖
1−‖AD(B−A)‖ )

≤ ‖ AD ‖‖ ‖AD(B−A)
1−‖AD(B−A)‖ )

and then the inequality holds. ¤

Remark. If ‖AD‖‖(B −A)‖ < 1 in the preceding theorem, then the inequality
becomes

‖BD −AD‖
AD

≤ ‖AD(B −A)‖
1− ‖AD(B −A)‖ ≤

κD(A)4
1− κD(A)4

where κD(A) = ‖AD‖‖A‖ is the Drazin condition number of A and where
4 = ‖B −A‖/‖A‖.

3. Some results on EP operators

As we know, every matrix A ∈ Cn×n has its Drazin inverse, but it is not
true for A ∈ B(H), in general. The following lemma indicates when an EP
operator is Drazin invertible. Recall that an operator A ∈ B(H) is called an
EP operator if R(T ) = R(T ∗).

Lemma 3.1. Let A ∈ B(H) be an EP operator. Thus A is Drazin invertible
if and only if R(A) is closed.

Proof. Sufficiency. Suppose A is Drazin invertible. Since A is an EP operator,
N(A∗) = N(A). Therefore A has the matrix form

A =
(

A1 0
0 0

)
: R(A)⊕N(A) → R(A)⊕N(A),

where R(A) denote the closure of R(A). Thus A1 is injective. Since A is Drazin
invertible, A1 is Drazin invertible and so A1 is invertible. Hence R(A) is closed.

Necessity. Suppose that R(A) is closed. If A is an EP operator, then
R(A∗) = R(A) is closed. Therefore A has the matrix form

A =
(

A1 0
0 0

)
: R(A∗)⊕N(A) → R(A)⊕N(A∗),

where A1 is invertible. Therefore A is Drazin invertible with its Drazin inverse
AD =

(
A−1

1 0
0 0

)
. ¤



REPRESENTATION OF BOUNDED LINEAR OPERATORS 553

Remark. It is well-known that A ∈ B(H) is Moore-Penrose invertible if and
only if R(A) is closed. Recall that If there exists an operator X ∈ B(H)
satisfied the following the relations

AXA = A,XAX = X, (AX)∗ = AX, (XA)∗ = XA,

then X is called a Moore-Penrose inverse of A ∈ B(H) and denoted by A†.
It is well-known that A† is unique. One of interesting result is that EP ma-
trices commute with their Moore-inverses [6]. From the proceeding proof, we
know that Drazin and Moore-Penrose inverses coincide for all closed range
EP operators. Therefore all closed range EP operators commute with their
Moore-inverses.

The following result which gives a condition ensuring that a perturbation of
a closed range EP operator is again EP , and establishes error bounds for the
Drazin inverse of the perturbation.

Theorem 3.2. Let A ∈ B(H) be a closed range EP operator and let B = A+E,
where E ∈ B(H) satisfies condition (W ) : AADEAAD = E and ‖ ADE ‖< 1.
Then B is also a closed range EP operator and

‖ BD −AD ‖
‖ AD ‖ ≤ ‖ ADE ‖

1− ‖ ADE ‖ .

Proof. Since A ∈ B(H) be a closed range EP operator, A has the matrix form

A =
(

A1 0
0 0

)
: R(A)⊕N(A) → R(A)⊕N(A),

where A1 is invertible.
Suppose E =

(
E11 E12
E21 E22

)
. Since AADEAAD = E,

(
A1 0
0 0

)(
A−1

1 0
0 0

)(
E11 E12

E21 E22

)(
A1 0
0 0

)(
A−1

1 0
0 0

)
=

(
E11 E12

E21 E22

)
.

Comparing the two sides of the above equation, we have E12 = E21 = E22 = 0.
Since ‖ADE‖ < 1, we have

‖A−1
1 E11‖ < 1.

Thus I + A−1
1 E11 = A−1

1 (A1 + E11) is invertible. Hence A1 + E11 is invertible.
By straight calculation, we obtain that B has the matrix form

B = A + E =
(

A1 + E11 0
0 0

)
: R(A)⊕N(A) → R(A)⊕N(A),

where A1+E11 is invertible. Thus B is a closed EP operator. By Theorem 2.3,
it is clear that Aπ = Bπ. Since Theorem 2.5, the inequality is trivial. ¤

Remark. Recall that P ∈ B(H) is called an orthogonal projection if P = P ∗ =
P 2. If A ∈ B(H) is Drazin invertible, then Aπ = I − AAD is an idempotent,
in general, not an orthogonal projection. In this case, by Lemma 1.1, we have
Aπ =

(
I −D
0 0

)
, where D =

∑k−1
i=0 T i−k

11 T12T
k−1−i
22 . But, from the proceeding
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proof, it is clear that Aπ is an orthogonal projection when A is a closed range
EP operator.

Here is a new characterization of closed range EP operators.

Theorem 3.3. Let A ∈ B(H) be a closed range operator. Then the following
conditions are equivalent:

(1) A is EP ;
(2) AAπ = 0 and (Aπ)∗ = Aπ;
(3) AπA∗ = A∗Aπ = 0.

Proof. (1) ⇒ (2) It is trivial.
(2) ⇒ (3) Since AAπ = 0 and AAπ = AπA, A = AADA = A2AD, R(A) ⊆

R(A2) from Douglas’s Range Inclusion Theorem. Since R(A2) ⊆ R(A), R(A) =
R(A2). Hence i(A) = des(A) ≤ 1.

Case 1. i(A) = 0. Thus A is invertible and AD = A−1. It is trivial.
Case 2. i(A) = 1. By straight calculation, then A and AD have the following

operator matrices, respectively

A =
(

A11 A12

0 0

)
,

AD =
(

A−1
11 A−2

11 A12

0 0

)

with respect to the space decomposition H = R(A)⊕R(A)⊥.
Since (Aπ)∗=Aπ, (ADA)∗=ADA, by straight calculation, we have R(AAD)

= R(A) and so A12 = 0. Therefore A =
(

A11 0
0 0

)
.

In this case, (3) holds trivially.
(3) ⇒ (1) Let A have the Drazin inverse AD and i(A) = k, by Lemma 1.1,

then A and Aπ have the operator matrix forms, respectively

A =
(

T11 T12

0 T22

)
,

Aπ = I −AAD =
(

0 −D
0 I

)

with respect to the space decomposition H = R(Ak) ⊕ R(Ak)⊥, where D =∑k−1
i=0 T i−k

11 T12T
k−1−i
22 .

Since AπA∗ = A∗Aπ = 0, AADA∗ = A∗AAD.
Notice the following: AADA = AAAD and R(AAD) = R(Ak). It follows

that R(Ak) is invariant for both A and A∗ and so T12 = 0. Therefore

A =
(

T11 0
0 T22

)
,

Aπ = I −AAD =
(

0 0
0 I

)
.
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Since AπA∗ = A∗Aπ = 0, we have T22 = 0 and so A =
(

T11 0
0 0

)
. Hence A is

EP.
(1) ⇒ (2) It is trivial.
(2) ⇒ (3) Since AAπ = 0 and AAπ = AπA, A = AADA = A2AD, R(A) ⊆

R(A2) from Douglas’s Range Inclusion Theorem. Since R(A2) ⊆ R(A), R(A) =
R(A2). Hence i(A) = des(A) ≤ 1.

Case 1. i(A) = 0. Thus A is invertible and AD = A−1. It is trivial.
Case 2. i(A) = 1. By straight calculation, then A and AD have the following

operator matrices, respectively

A =
(

A11 A12

0 0

)
,

AD =
(

A−1
11 A−2

11 A12

0 0

)

with respect to the space decomposition H = R(A)⊕R(A)⊥.
Since (Aπ)∗=Aπ, (ADA)∗=ADA, by straight calculation, we have R(AAD)

= R(A) and so A12 = 0. Therefore A =
(

A11 0
0 0

)
.

In this case, (3) holds trivially.
(3) ⇒ (1) Let A have the Drazin inverse AD and i(A) = k, by Lemma 1.1,

then A and Aπ have the operator matrix forms, respectively

A =
(

T11 T12

0 T22

)
,

Aπ = I −AAD =
(

0 −D
0 I

)

with respect to the space decomposition H = R(Ak) ⊕ R(Ak)⊥, where D =∑k−1
i=0 T i−k

11 T12T
k−1−i
22 .

Since AπA∗ = A∗Aπ = 0, AADA∗ = A∗AAD.
Notice the following: AADA = AAAD and R(AAD) = R(Ak). It follows

that R(Ak) is invariant for both A and A∗ and so T12 = 0. Therefore

A =
(

T11 0
0 T22

)
,

Aπ = I −AAD =
(

0 0
0 I

)
.

Since AπA∗ = A∗Aπ = 0, we have T22 = 0 and so A =
(

T11 0
0 0

)
. Hence A is

EP. ¤

Remark. In [6], they give a characterization of EP matrices. Recall that A ∈
Cn×n is EP , which can be rewritten in the different equivalent forms (see
Theorem 5.2 in [6]). We must point out that the conditions: I + AH −ADA is
invertible in (iii) and I + ADAH − ADA is invertible in (iv), respectively, can
be deleted. In fact, from the proceeding proof, we can easily check that both
I+AH−ADA and I+ADAH−ADA are invertible if ADAAH = AH = AHADA.
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