RELATION BETWEEN ANN-CATEGORIES AND RING CATEGORIES

CHE THI KIM PHUNG, NGUYEN TIEN QUANG, AND NGUYEN THU THUY

ABSTRACT. There are different categorifications of the notion of a *ring* such as *Ann-category* due to N. T. Quang, *ring category* due to M. M. Kapranov and V. A. Voevodsky. The main result of this paper is to prove that every axiom in the definition of a *ring category*, but the axiom $x_0 = y_0$, can be deduced from the axiomatics of an *Ann-category*.

1. Introduction

Categories with monoidal structures \oplus , \otimes (also called *categories with distributivity constraints*) were presented by M. L. Laplaza [3]. M. M. Kapranov and V. A. Voevodsky [2] omitted requirements of the axiomatics due to Laplaza which are related to the commutativity constraints of the operation \otimes . These appeared under the name *ring categories*.

In another approach, a monoidal category can be "smoothed" to become a *category with group structure*, when added the invertible objects (see Laplaza [4], Saavedra Rivano [9]). Now, if the ground category is a *groupoid* (i.e., each morphism is an isomorphism), then we have a *group-like monoidal category* (see A. Fröhlich and C. T. C. Wall [1]), or a *Gr-category* (see H. X. Sinh [11]). These categories can be classified by $H^3(\Pi, A)$. Each Gr-category \mathcal{G} is determined by 3 invariants: The group Π of classes of congruence objects, Π -module A of automorphisms of the unit 1, and an element $\overline{h} \in H^3(\Pi, A)$, where h is induced by the associativity constraint of \mathcal{G} .

In 1987, in [6], N. T. Quang proposed a notion of an Ann-category, as a categorification of the notion of rings, when a symmetric Gr-category (also called Pic-category) is equipped with a monoidal structure \otimes . In [8], [7], Ann-categories and *regular* Ann-categories, developed from the ring extension problem, have been classified by, respectively, Mac Lane ring cohomology [5] and Shukla algebraic cohomology [10].

The aim of this paper is to clearly show the relation between these definitions of an *Ann-category* and a *ring category*.

O2010 The Korean Mathematical Society

523

Received November 24, 2009; Revised July 20, 2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 18 D10.$

Key words and phrases. Ann-category, ring category, distributivity constraint.

For convenience, let us recall the definitions. Moreover, let us denote AB or A.B instead of $A \otimes B$.

2. Fundamental definitions

Definition 2.1. The axiomatics of an Ann-category

An Ann-category consists of:

i) a groupoid \mathcal{A} together with two bifunctors $\oplus, \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$.

ii) a fixed object $0 \in \mathcal{A}$ together with naturality constraints a_+, c, g, d such that $(\mathcal{A}, \oplus, a_+, c, (0, g, d))$ is a Pic-category.

iii) a fixed object $1 \in \mathcal{A}$ together with naturality constraints a, l, r such that $(\mathcal{A}, \otimes, a, (1, l, r))$ is a monoidal A-category.

iv) natural isomorphisms $\mathfrak{L}, \mathfrak{R}$:

$$\mathfrak{L}_{A,X,Y}:A\otimes (X\oplus Y)\longrightarrow (A\otimes X)\oplus (A\otimes Y),$$

 $\Re_{X,Y,A}: (X\oplus Y)\otimes A \longrightarrow (X\otimes A)\oplus (Y\otimes A)$

such that the following conditions are satisfied:

(Ann-1) For each $A \in \mathcal{A}$, the pairs $(L^A, \check{L^A}), (R^A, \check{R^A})$ determined by relations:

$$L^A = A \otimes -, \qquad R^A = - \otimes A,$$

vр

$$L^{A}_{X,Y} = \mathfrak{L}_{A,X,Y}, \quad R^{A}_{X,Y} = \mathfrak{R}_{X,Y,A}$$

are \oplus -functors which are compatible with a_+ and c. (Ann-2) For all $A, B, X, Y \in \mathcal{A}$, the following diagrams:

525

commute, where $v = v_{U,V,Z,T} : (U \oplus V) \oplus (Z \oplus T) \longrightarrow (U \oplus Z) \oplus (V \oplus T)$ is the unique functor built from a_+, c, id in the monoidal symmetric category (\mathcal{A}, \oplus) . (Ann-3) For the unit object $1 \in \mathcal{A}$ of the operation \oplus , the following diagrams commute:

(1.4)

$$1(X \oplus Y) \xrightarrow{L^{1}} 1X \oplus 1Y$$

$$I_{X \oplus Y} \xrightarrow{K^{1}} X \oplus Y$$

$$(X \oplus Y)1 \xrightarrow{\check{R}^{1}} X1 \oplus Y1$$

$$r_{X \oplus Y} \xrightarrow{K \oplus Y} r_{X \oplus r_{Y}}$$

Remark. The commutative diagrams (1.1), (1.1') and (1.2), respectively, mean that:

$$(a_{A,B,-}) : L^A . L^B \longrightarrow L^{AB}, (a_{-,A,B}) : R^{AB} \longrightarrow R^A . R^B, (a_{A,-,B}) : L^A . R^B \longrightarrow R^B . L^A$$

are \oplus -functors. The diagram (1.3) shows that the family $(\check{L}_{X,Y}^Z)_Z = (\mathcal{L}_{-,X,Y})$ is an \oplus -functor between the \oplus -functors $Z \mapsto Z(X \oplus Y)$ and $Z \mapsto ZX \oplus ZY$, and the family $(\check{R}_{A,B}^C)_C = (\mathcal{R}_{A,B,-})$ is an \oplus -functor between the functors $C \mapsto (A \oplus B)C$ and $C \mapsto AC \oplus BC$. The diagram (1.4) (resp. (1.4')) shows that l (resp. r) is an \oplus -functor from L^1 (resp. R^1) to the unit functor of the \oplus -category \mathcal{A} .

Definition 2.2. The axiomatics of a ring category

A ring category is a category \mathcal{R} equipped with two monoidal structures \oplus , \otimes (which include corresponding associativity morphisms $a_{A,B,C}^{\oplus}$, $a_{A,B,C}^{\otimes}$ and unit objects denoted 0, 1) together with natural isomorphisms:

$$\begin{split} u_{A,B}: A \oplus B \to B \oplus A, \qquad v_{A,B,C}: A \otimes (B \oplus C) \to (A \otimes B) \oplus (A \otimes C), \\ w_{A,B,C}: (A \oplus B) \otimes C \to (A \otimes C) \oplus (B \otimes C), \\ x_A: A \otimes 0 \to 0, \qquad y_A: 0 \otimes A \to 0. \end{split}$$

These isomorphisms are required to satisfy the following conditions.

 $K1(\bullet \oplus \bullet)$ The isomorphisms $u_{A,B}$ define on \mathcal{R} a structure of a symmetric monoidal category, i.e., they form a braiding and $u_{A,B}u_{B,A} = 1$.

 $K2(\bullet \otimes (\bullet \oplus \bullet))$ For any objects A, B, C the following diagram commutes:

$$\begin{array}{c|c} A \otimes (B \oplus C) & \xrightarrow{v_{A,B,C}} & (A \otimes B) \oplus (A \otimes C) \\ \hline \\ A \otimes u_{B,C} & & \downarrow \\ A \otimes (C \oplus B) & \xrightarrow{v_{A,C,B}} & (A \otimes C) \oplus (A \otimes B) \ . \end{array}$$

 $K3((\bullet \oplus \bullet) \otimes \bullet)$ For any objects A, B, C the following diagram commutes:

$$\begin{array}{c|c} (A \oplus B) \otimes C & \xrightarrow{w_{A,B,C}} & (A \otimes C) \oplus (B \otimes C) \\ \\ u_{A,B} \otimes C & & & \\ & & & \\ (B \oplus A) \otimes C & \xrightarrow{w_{B,A,C}} & (B \otimes C) \oplus (A \otimes C) \ . \end{array}$$

 $K4((\bullet\oplus\bullet\oplus\bullet)\otimes\bullet)$ For any objects A,B,C,D the following diagram commutes:

$$\begin{array}{c} (A \oplus (B \oplus C)D) \xrightarrow{w_{A,B \oplus C,D}} AD \oplus ((B \oplus C)D) \xrightarrow{AD \oplus w_{B,C,D}} AD \oplus (BD \oplus CD) \\ & \xrightarrow{a_{A,B,C} \otimes D} \\ ((A \oplus B) \oplus C)D \xrightarrow{w_{A \oplus B,C,D}} (A \oplus B)D \oplus CD \xrightarrow{w_{A,B,D} \oplus CD} (AD \oplus BD) \oplus CD . \end{array}$$

 $K5(\bullet \otimes (\bullet \oplus \bullet \oplus \bullet))$ For any objects A, B, C, D the following diagram commutes:

$$\begin{array}{c|c} A(B \oplus (C \oplus D)) \xrightarrow{v_{A,B,C \oplus D}} AB \oplus A(C \oplus D) \xrightarrow{AB \oplus v_{A,C,D}} AB \oplus (AC \oplus AD) \\ & & & & \\ A \otimes a_{B,C,D} & & & \\ A((B \oplus C) \oplus D) \xrightarrow{v_{A,B \oplus C,D}} A(B \oplus C) \oplus AD \xrightarrow{v_{A,B,C} \oplus AD} (AB \oplus AC) \oplus AD \end{array}$$

 $K6(\bullet \otimes \bullet \otimes (\bullet \oplus \bullet))$ For any objects A, B, C, D the following diagram commutes:

$$\begin{array}{c|c} A(B(C \oplus D)) & \xrightarrow{A \otimes v_{B,C,D}} A(BC \oplus BD) \xrightarrow{v_{A,BC,BD}} A(BC) \oplus A(BD) \\ & \xrightarrow{a_{A,B,C \oplus D}} & & & & \\ & & & & \\ & & & & & \\ & & & & \\$$

 $K7((\bullet\oplus\bullet)\otimes\bullet\otimes\bullet)$ For any objects A,B,C,D the following diagram commutes:

 $K8(\bullet\otimes(\bullet\oplus\bullet)\otimes\bullet)$ For any objects A,B,C,D the following diagram commutes:

$$\begin{array}{c} (A(B \oplus C))D \xrightarrow{v_{A,B,C} \otimes D} (AB \oplus AC)D \xrightarrow{w_{AB,AC,D}} (AB)D \oplus (AC)D \\ & \stackrel{\bullet}{\longrightarrow} (AB) \oplus C,D \\ & A((B \oplus C)D) \xrightarrow{A \otimes w_{B,C,D}} A(BD \oplus CD) \xrightarrow{v_{A,BD,CD}} A(BD) \oplus A(CD) . \end{array}$$

is commutative (the notions for arrows have been omitted, they are obvious).

 $K10(0 \otimes 0)$ The maps $x_0, y_0 : 0 \otimes 0 \to 0$ coincide.

 $K11(0 \otimes (\bullet \oplus \bullet))$ For any objects A, B the following diagram commutes:

$$\begin{array}{c|c} 0 \otimes (A \oplus B) & \xrightarrow{v_{0,A,B}} & (0 \otimes A) \oplus (0 \otimes B) \\ & & & \\ y_{A \oplus B} \\ & & & \\ 0 & \longleftarrow & l_{0}^{\oplus} = r_{0}^{\oplus} \\ & & & 0 \oplus 0 \end{array}$$

 $K12((\bullet \oplus \bullet) \otimes 0)$ For any objects A, B the following diagram commutes:

 $K13(0 \otimes 1)$ The maps $y_1, r_0^{\otimes} : 0 \otimes 1 \to 0$ coincide.

 $K14(1 \otimes 0)$ The maps $x_1, l_0^{\otimes} : 1 \otimes 0 \to 0$ coincide.

 $K15(0 \otimes \bullet \otimes \bullet)$ For any objects A, B the following diagram commutes:

 $K16(\bullet\otimes 0\otimes \bullet), (\bullet\otimes \bullet\otimes 0)$ For any objects A,B the following diagrams commute:

 $K17(\bullet(0 \oplus \bullet))$ For any objects A, B the following diagram commutes:

$$\begin{array}{c|c} A \otimes (0 \oplus B) & \xrightarrow{v_{A,0,B}} & (A \otimes 0) \oplus (A \otimes B) \\ \hline \\ A \otimes l_B^{\oplus} & & \downarrow \\ A \otimes B & \xleftarrow{l_{A \otimes B}} & 0 \oplus (A \otimes B) \end{array}$$

 $K18((0 \oplus \bullet) \otimes \bullet), (\bullet \otimes (\bullet \oplus 0)), ((\bullet \oplus 0) \otimes \bullet)$ For any objects A, B the diagrams

$$\begin{array}{c|c} (0 \oplus A) \otimes B & \xrightarrow{w_{0}, A, B} & (0 \otimes B) \oplus (A \otimes B) \\ \downarrow & & & \downarrow \\ l_{A}^{\oplus} \otimes B & \downarrow & \downarrow \\ A \otimes B & \downarrow & l_{A \otimes B}^{\oplus} \\ A \otimes B & \longleftarrow & 0 \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes 0) \\ \downarrow & & \downarrow \\ A \otimes B & \downarrow & (A \otimes B) \oplus (A \otimes 0) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes 0) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (0 \otimes B) \\ \uparrow & & \downarrow \\ r_{A \otimes B}^{\oplus} & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (0 \otimes B) \\ \downarrow & & \downarrow \\ r_{A \otimes B}^{\oplus} & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \longleftarrow & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes B & \bigoplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes & \oplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes & \oplus & (A \otimes B) \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes & \oplus & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & \downarrow \\ A \otimes & \oplus & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow & & (A \otimes B \oplus (A \otimes B) \\ \downarrow &$$

are commutative.

3. Relation between an Ann-category and a ring category

In this section, we prove that the axiomatics of a ring category, without K10, can be deduced from the axiomatics of an Ann-category. First, we can see that, the functor morphisms $a^{\oplus}, a^{\otimes}, u, l^{\oplus}, r^{\oplus}, v, w$, in Definition 2.2 are, respectively, the functor morphisms $a_+, a, c, g, d, \mathfrak{L}, \mathfrak{R}$ in Definition 2.1. The isomorphisms x_A, y_A coincide with the isomorphisms \hat{L}^A, \hat{R}^A referred in Proposition 3.2 below.

We now prove that diagrams which commute in a ring category also hold in an Ann-category.

K1 obviously follows from (ii) in the definition of an Ann-category.

The commutative diagrams K2, K3, K4, K5 are indeed the compatibility of functor isomorphisms $(L^A, \check{L}^A), (R^A, \check{R}^A)$ with the constraints a_+, c (the axiom Ann-1).

The diagrams K5 - K9, respectively, are indeed the ones in (Ann-2). Particularly, K9 is indeed the decomposition of (1.3) where the morphism v is replaced by its definition diagram:

Proofs of K17, K18

Lemma 3.1. Let $\mathcal{P}, \mathcal{P}'$ be Gr-categories, $(a_+, (0, g, d)), (a'_+, (0', g', d'))$ be respective constraints, and $(F, \check{F}) : \mathcal{P} \to \mathcal{P}'$ be \oplus -functor which is compatible with (a_+, a'_+) . Then (F, \check{F}) is compatible with the unit constraints (0, g, d)), (0', g', d').

First, the isomorphism $\widehat{F}: F0 \to 0'$ is determined by the composition

$$u = F0 \oplus F0 \stackrel{\widetilde{F}}{\longleftarrow} F(0 \oplus 0) \stackrel{F(g)}{\longrightarrow} F0 \stackrel{g'}{\longleftarrow} 0' \oplus F0.$$

Since F0 is a regular object, there exists uniquely the isomorphism $\widehat{F} : F0 \to 0'$ such that $\widehat{F} \oplus id_{F0} = u$. Then, we may prove that \widehat{F} satisfies the diagrams in the definition of the compatibility of the \oplus -functor F with the unit constraints.

Proposition 3.2. In an Ann-category A, there exist uniquely isomorphisms

$$\hat{L}^A: A\otimes 0 \longrightarrow 0, \quad \hat{R}^A: 0\otimes A \longrightarrow 0,$$

such that the following diagrams

(2.1)
$$AX \xleftarrow{L^{A}(g)} A(0 \oplus X)$$
$$\downarrow^{L^{A}} \downarrow^{L^{A}}$$
$$0 \oplus AX \xleftarrow{\hat{L}^{A} \oplus id} A0 \oplus AX ,$$

(2.1')
$$AX \xleftarrow{L^{A}(d)} A(X \oplus 0)$$
$$\downarrow L^{A}$$
$$AX \oplus 0 \xleftarrow{id \oplus \hat{L}^{A}} AX \oplus A0,$$

commute, i.e., L^A and R^A are U-functors respect to the operation \oplus .

531

Proof. Since (L^A, \check{L}^A) are \oplus -functors which are compatible with the associativity constraint a^{\oplus} of the Picard category (\mathcal{A}, \oplus) , they are also compatible with the unit constraint (0, g, d) thanks to Lemma 3.1. That means there exists uniquely the isomorphism \hat{L}^A satisfying the diagrams (2.1) and (2.1'). The proof for \hat{R}^A is similar. The diagrams commute in Proposition 1 are indeed K17, K18.

Proofs of K15, K16

Lemma 3.3. Let $(F, \check{F}), (G, \check{G})$ be \oplus -functors between \oplus -categories C, C' which are compatible with the constraints (0, g, d), (0', g', d') and $\tilde{F} : F(0) \longrightarrow 0', \tilde{G} :$ $G(0) \longrightarrow 0'$ are respective isomorphisms. If $\alpha : F \longrightarrow G$ in an \oplus -morphism such that α_0 is an isomorphism, then the diagram

commutes.

Proof. Let us consider the diagram:

$$\begin{array}{c|c} & id \oplus u_{0} \\ & (I) \\ 0' \oplus F0 & \overleftarrow{F} \oplus id & F0 \oplus F0 & \underbrace{u_{0} \oplus u_{0}}_{G0 \oplus G0} & G0 \oplus G0 & \overleftarrow{G} \oplus id & 0' \oplus G0 \\ g' & (II) & \overrightarrow{F} & (III) & \widetilde{G} & (IV) & g' \\ F0 & \overleftarrow{F(g)} & F(0 \oplus 0) & \underbrace{u_{0 \oplus 0}}_{U_{0 \oplus 0}} & G(0 \oplus 0) & \underbrace{G(g)}_{U_{0}} & G0 \\ & (V) & & & & \\ & & & & & \\ \end{array}$$

In this diagram, the regions (II) and (IV) commute thanks to the compatibility of \oplus -functors $(F, \breve{F}), (G, \breve{G})$ with the unit constraint; the region (III) commutes since u is a \oplus -morphism; the region (V) commutes thanks to the naturality of g'. Therefore, the region (I) commutes, i.e.,

$$\check{G} \circ u_0 \oplus u_0 = \check{F} \oplus u_0.$$

Since F0 is a regular object, $\breve{G} \circ u_0 = \breve{F}$.

Proposition 3.4. For any objects $X, Y \in ob\mathcal{A}$ the following diagrams commute

(2.3')
$$\begin{array}{c|c} 0 \otimes (X \otimes Y) & \xrightarrow{\widehat{R}^{XY}} & 0 \\ a & & & & \\ a & & & & \\ 0 \otimes X) \otimes Y & \xrightarrow{\widehat{R}^{X} \otimes id} & 0 \otimes Y , \end{array}$$

Proof. To prove that the first diagram is commutative, let us consider the diagram:

where $L = L^X \circ L^Y$. According to the axiom (1.1), $(a_{X,Y,Z})_Z$ is an \oplus -morphism from the functor $L = L^X \circ L^Y$ to the functor $G = L^{XY}$. Therefore, from Lemma 3.3, the region (II) commutes. The region (I) commutes thanks to the determination of \hat{L} of the composition $L = L^X \circ L^Y$. So the perimeter commutes.

The second diagram is proved similarly, thanks to the axiom (1.1'). To prove that the diagram (2.4) commutes, let us consider the diagram:

$$\begin{array}{c|c} X \otimes (0 \otimes Y) & \xrightarrow{a} & (X \otimes 0) \otimes Y \\ id \otimes \widehat{R^{Y}} & & & \\ III) & & & \\ X \otimes 0 & \xrightarrow{\widehat{LX}} & 0 & \overleftarrow{\widehat{R^{Y}}} & 0 \otimes Y \end{array}$$

where $H = L^X \circ R^Y$ and $K = R^Y \circ L^X$. Then the regions (II) and (III) commute thanks to the determination of the isomorphisms H and K. From the axiom (1.2), $(a_{X,Y,Z})_Z$ is an \oplus -morphism from the functor H to the functor K. So from Lemma 3.3, the region (I) commutes. Therefore, the perimeter commutes. The diagrams in Proposition 3.4 are indeed K15, K16.

Proof of K11

Proposition 3.5. In an Ann-category, the following diagram commutes:

Proof. Let us consider the diagram:

In this diagram, the region (V) commutes thanks to the axiom I (1.3), the region (I) commutes thanks to the functorial property of \mathfrak{L} ; the perimeter and the region (II) commute thanks to the compatibility of the functors $R^{B\oplus C}$, R^B , R^C with the unit constraint (0, g, d); the region (III) commutes thanks to the functorial property of v; the region (VI) commutes thanks to the coherence for the ACU-functor (L^A, \check{L}^A) . So (IV) commutes. Note that $A(B \oplus C)$ is a regular object respect to the operation \oplus , so the diagram (2.5) commutes. We have K11.

Similarly, we have K12.

Proofs of K13, K14

Proposition 3.6. In an Ann-category, we have:

$$\widehat{L}^1 = l_0, \quad \widehat{R}^1 = r_0.$$

Proof. We will prove the first equation, the second one is proved similarly. Let us consider the diagram (2.6). In this diagram, the perimeter commutes thanks to the compatibility of \oplus -functor (L^1, \check{L}^1) with the unit constraint (0, g, d)respect to the operation \oplus ; the region (I) commutes thanks to the functorial property of the isomorphism l; the region (II) commutes thanks to the functorial property of g; the region (III) obviously commutes; the region (IV) commutes thanks to the axiom I(1.4). So the region (V) commutes, i.e.,

$$L^1 \oplus id_{1.0} = l_0 \oplus id_{1.0}$$

Since 1.0 is a regular object respect to the operation \oplus , $\hat{L}^1 = l_0$.

(2.6)
$$\begin{array}{c} 1.0 & \stackrel{L^{1}(g_{0}) = id \otimes g_{0}}{1.0 \oplus 0} & 1.(0 \oplus 0) \\ & & & \\ & & \\ g_{1.0} & (II) & g_{0} & (III) & id \\ & & & \\ & &$$

We have K14.

Similarly, we have K13.

Definition 3.1. An Ann-category \mathcal{A} is strong if $\widehat{L}^0 = \widehat{R}^0$.

All the above results can be stated as follows.

Proposition 3.7. Each strong Ann-category is a ring category.

Remark. In our opinion, in the axiomatics of a *ring category*, the compatibility of the distributivity constraint with the unit constraint (1, l, r) respect to the operation \otimes is necessary, i.e., the diagrams of (Ann-3) should be added.

Moreover, if the symmetric monoidal structure of the operation \oplus is replaced with the symmetric categorical groupoid structure, then each ring category is an Ann-category.

An open question: May the equation $\widehat{L}^0 = \widehat{R}^0$ be proved to be independent in an Ann-category?

References

- A. Fröhlich and C. T. C. Wall, Graded monoidal categories, Compos. Math. 28 (1974), 229–285.
- [2] M. M. Kapranov and V. A. Voevodsky, 2-categories and Zamolodchikov tetrahedra equations, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), 177–259, Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994.

- [3] M. L. Laplaza, Coherence for distributivity, Coherence in categories, pp. 29–65. Lecture Notes in Math., Vol. 281, Springer, Berlin, 1972.
- [4] _____, Coherence for categories with group structure: an alternative approach, J. Algebra 84 (1983), no. 2, 305–323.
- [5] S. Mac Lane, Homologie des anneaux et des modules, 1957 Colloque de topologie algebrique, Louvain, 1956 pp. 55–80 Georges Thone, Liege; Masson & Cie, Paris.
- [6] N. T. Quang, Introduction to Ann-categories, Tap chi Toán học 15 (1987), no. 4, 14–24.
 [7] _____, Ann-categories and the Mac Lane-Shukla cohomology of rings, Abelian groups
- and modules, No. 11, 12 (Russian), 166–183, 257, Tomsk. Gos. Univ., Tomsk, 1994.
 [8] ______, Structure of Ann-categories, arXiv. 0805. 1505 v4 [math. CT] 20 Apr 2009.
- [9] M. Saavedra Rivano. Catégories Tannakiennes, Lecture Notes in Math. vol. 265, Spriger-Verlag, Berlin and New York, 1972.
- [10] U. Shukla, Cohomologie des algebras associatives, Ann. Sci. École Norm. Sup. 7 (1961), 163–209.
- [11] H. X. Sinh, Gr-catégories, Université Paris VII, Thèse de doctorat, 1975.

CHE THI KIM PHUNG DEPARTMENT OF MATHEMATICS DONG THAP UNIVERSITY 783 PHAM HUU LAU STREET,CAO LANH CITY DONG THAP PROVINCE, VIETNAM *E-mail address*: kimphungk25@yahoo.com

NGUYEN TIEN QUANG DEPARTMENT OF MATHEMATICS HANOI NATIONAL UNIVERSITY OF EDUCATION 136 XUAN THUY STREET, HANOI, VIETNAM *E-mail address*: nguyenquang272002@gmail.com

NGUYEN THU THUY DEPARTMENT OF MATHEMATICS HANOI NATIONAL UNIVERSITY OF EDUCATION 136 XUAN THUY STREET, HANOI, VIETNAM *E-mail address:* ntthuy110gmail.com