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RELATION BETWEEN ANN-CATEGORIES
AND RING CATEGORIES

Che Thi Kim Phung, Nguyen Tien Quang, and Nguyen Thu Thuy

Abstract. There are different categorifications of the notion of a ring
such as Ann-category due to N. T. Quang, ring category due to M. M.
Kapranov and V. A. Voevodsky. The main result of this paper is to
prove that every axiom in the definition of a ring category, but the axiom
x0 = y0, can be deduced from the axiomatics of an Ann-category.

1. Introduction

Categories with monoidal structures ⊕,⊗ (also called categories with dis-
tributivity constraints) were presented by M. L. Laplaza [3]. M. M. Kapranov
and V. A. Voevodsky [2] omitted requirements of the axiomatics due to Laplaza
which are related to the commutativity constraints of the operation ⊗. These
appeared under the name ring categories.

In another approach, a monoidal category can be “smoothed” to become a
category with group structure, when added the invertible objects (see Laplaza
[4], Saavedra Rivano [9]). Now, if the ground category is a groupoid (i.e., each
morphism is an isomorphism), then we have a group-like monoidal category
(see A. Fröhlich and C. T. C. Wall [1]), or a Gr-category (see H. X. Sinh
[11]). These categories can be classified by H3(Π, A). Each Gr-category G
is determined by 3 invariants: The group Π of classes of congruence objects,
Π-module A of automorphisms of the unit 1, and an element h ∈ H3(Π, A),
where h is induced by the associativity constraint of G.

In 1987, in [6], N. T. Quang proposed a notion of an Ann-category, as a
categorification of the notion of rings, when a symmetric Gr-category (also
called Pic-category) is equipped with a monoidal structure ⊗. In [8], [7], Ann-
categories and regular Ann-categories, developed from the ring extension prob-
lem, have been classified by, respectively, Mac Lane ring cohomology [5] and
Shukla algebraic cohomology [10].

The aim of this paper is to clearly show the relation between these definitions
of an Ann-category and a ring category.
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For convenience, let us recall the definitions. Moreover, let us denote AB or
A.B instead of A⊗B.

2. Fundamental definitions

Definition 2.1. The axiomatics of an Ann-category
An Ann-category consists of:
i) a groupoid A together with two bifunctors ⊕,⊗ : A×A −→ A.
ii) a fixed object 0 ∈ A together with naturality constraints a+, c, g, d such

that (A,⊕, a+, c, (0, g, d)) is a Pic-category.
iii) a fixed object 1 ∈ A together with naturality constraints a, l, r such that

(A,⊗, a, (1, l, r)) is a monoidal A-category.
iv) natural isomorphisms L, R :

LA,X,Y : A⊗ (X ⊕ Y ) −→ (A⊗X)⊕ (A⊗ Y ),

RX,Y,A : (X ⊕ Y )⊗A −→ (X ⊗A)⊕ (Y ⊗A)
such that the following conditions are satisfied:
(Ann-1) For each A ∈ A, the pairs (LA, L̆A), (RA, R̆A) determined by relations:

LA = A⊗−, RA = −⊗A,

L̆A
X,Y = LA,X,Y , R̆A

X,Y = RX,Y,A

are ⊕-functors which are compatible with a+ and c.
(Ann-2) For all A,B, X, Y ∈ A, the following diagrams:

(1.1)

(AB)(X ⊕ Y ) A(B(X ⊕ Y )) A(BX ⊕BY )

(AB)X ⊕ (AB)Y A(BX)⊕A(BY ),
?

L̆AB

¾aA,B,X⊕Y -idA⊗L̆B

?
L̆A

¾ aA,B,X⊕aA,B,Y

(1.1’)

(X ⊕ Y )(BA) ((X ⊕ Y )B)A (XB ⊕ Y B)A

X(BA)⊕ Y (BA) (XB)A⊕ (Y B)A,
?

R̆BA

-aX⊕Y,B,A -R̆B⊗idA

?
R̆A

-aX,B,A⊕aY,B,A

(1.2)

(A(X ⊕ Y ))B A((X ⊕ Y )B) A(XB ⊕ Y B)

(AX ⊕AY )B (AX)B ⊕ (AY )B A(XB)⊕A(Y B),
?

L̆A⊗idB

¾aA,X⊕Y,B -idA⊗R̆B

?

L̆A

-R̆B
¾a⊕a
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(1.3)
(A⊕B)X ⊕ (A⊕B)Y (A⊕B)(X ⊕ Y ) A(X ⊕ Y )⊕B(X ⊕ Y )

(AX ⊕BX)⊕ (AY ⊕BY ) (AX ⊕AY )⊕ (BX ⊕BY )

?

R̆X⊕R̆Y

¾L̆A⊕B -R̆X⊕Y

?

L̆A⊕L̆B

-v

commute, where v = vU,V,Z,T : (U ⊕V )⊕ (Z⊕T ) −→ (U ⊕Z)⊕ (V ⊕T ) is the
unique functor built from a+, c, id in the monoidal symmetric category (A,⊕).
(Ann-3) For the unit object 1 ∈ A of the operation ⊕, the following diagrams
commute:

(1.4)

1(X ⊕ Y ) 1X ⊕ 1Y

X ⊕ Y

-L̆1

Q
Q

QQslX⊕Y

´
´

´́+ lX⊕lY

(1.4’)

(X ⊕ Y )1 X1⊕ Y 1

X ⊕ Y

-R̆1

Q
Q

QQsrX⊕Y

´
´

´́+ rX⊕rY

Remark. The commutative diagrams (1.1), (1.1’) and (1.2), respectively, mean
that:

(aA,B,−) : LA.LB −→ LAB ,

(a−,A,B) : RAB −→ RA.RB ,

(aA,−,B) : LA.RB −→ RB .LA

are ⊕-functors. The diagram (1.3) shows that the family (L̆Z
X,Y )Z = (L−,X,Y )

is an ⊕-functor between the ⊕-functors Z 7→ Z(X ⊕ Y ) and Z 7→ ZX ⊕ ZY ,
and the family (R̆C

A,B)C = (RA,B,−) is an ⊕-functor between the functors
C 7→ (A ⊕ B)C and C 7→ AC ⊕ BC. The diagram (1.4) (resp. (1.4’)) shows
that l (resp. r) is an ⊕-functor from L1 (resp. R1) to the unit functor of the
⊕-category A.

Definition 2.2. The axiomatics of a ring category
A ring category is a category R equipped with two monoidal structures ⊕,⊗

(which include corresponding associativity morphisms a⊕A,B,C , a⊗A,B,C and unit
objects denoted 0, 1) together with natural isomorphisms:

uA,B : A⊕B → B ⊕A, vA,B,C : A⊗ (B ⊕ C) → (A⊗B)⊕ (A⊗ C),

wA,B,C : (A⊕B)⊗ C → (A⊗ C)⊕ (B ⊗ C),
xA : A⊗ 0 → 0, yA : 0⊗A → 0.

These isomorphisms are required to satisfy the following conditions.
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K1(• ⊕ •) The isomorphisms uA,B define on R a structure of a symmetric
monoidal category, i.e., they form a braiding and uA,BuB,A = 1.

K2(• ⊗ (• ⊕ •)) For any objects A,B, C the following diagram commutes:

A⊗ (B ⊕ C) (A⊗B)⊕ (A⊗ C)

A⊗ (C ⊕B) (A⊗ C)⊕ (A⊗B) .

?

A⊗uB,C

-vA,B,C

?

uA⊗B,A⊗C

-vA,C,B

K3((• ⊕ •)⊗ •) For any objects A,B, C the following diagram commutes:

(A⊕B)⊗ C (A⊗ C)⊕ (B ⊗ C)

(B ⊕A)⊗ C (B ⊗ C)⊕ (A⊗ C) .

?

uA,B⊗C

-wA,B,C

?

uA⊗C,B⊗C

-wB,A,C

K4((• ⊕ • ⊕ •)⊗ •) For any objects A, B,C, D the following diagram com-
mutes:

(A⊕ (B ⊕ C)D) AD ⊕ ((B ⊕ C)D) AD ⊕ (BD ⊕ CD)

((A⊕B)⊕ C)D (A⊕B)D ⊕ CD (AD ⊕BD)⊕ CD .

?

a⊕
A,B,C

⊗D

-wA,B⊕C,D -AD⊕wB,C,D

?

a⊕
AD,BD,CD

-wA⊕B,C,D -wA,B,D⊕CD

K5(• ⊗ (• ⊕ • ⊕ •)) For any objects A, B,C, D the following diagram com-
mutes:

A(B ⊕ (C ⊕D)) AB ⊕A(C ⊕D) AB ⊕ (AC ⊕AD)

A((B ⊕ C)⊕D) A(B ⊕ C)⊕AD (AB ⊕AC)⊕AD .

?

A⊗a⊕
B,C,D

-vA,B,C⊕D -AB⊕vA,C,D

?

a⊕
AB,AC,AD

-vA,B⊕C,D -vA,B,C⊕AD

K6(• ⊗ • ⊗ (• ⊕ •)) For any objects A, B,C, D the following diagram com-
mutes:

A(B(C ⊕D)) A(BC ⊕BD) A(BC)⊕A(BD)

(AB)(C ⊕D) (AB)C ⊕ (AB)D .

?
a⊗

A,B,C⊕D

-A⊗vB,C,D -vA,BC,BD

?
a⊗

A,B,C
⊕a⊗

A,B,D

-vAB,C,D
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K7((• ⊕ •)⊗ • ⊗ •) For any objects A, B,C, D the following diagram com-
mutes:

((A⊕B)C)D (AC ⊕BC)D (AC)D ⊕ (BC)D

(A⊕B)(CD) A(CD)⊕B(CD) .

-wA,B,C⊗D -wAC,BC,D

-wA,B,CD

6
a⊗

A⊕B,C,D

6
a⊗

A,C,D
⊕a⊗

B,C,D

K8(• ⊗ (• ⊕ •)⊗ •) For any objects A, B,C, D the following diagram com-
mutes:

(A(B ⊕ C))D (AB ⊕AC)D (AB)D ⊕ (AC)D

A((B ⊕ C)D) A(BD ⊕ CD) A(BD)⊕A(CD) .

-vA,B,C⊗D -wAB,AC,D

-A⊗wB,C,D

6
a⊗

A,B⊕C,D

-vA,BD,CD

6
a⊗

A,B,D
⊕a⊗

A,C,D

K9((• ⊕ •)⊗ (• ⊕ •)) For any objects A,B, C, D the diagram

((AC ⊕BC)⊕AD)⊕BD

(AC ⊕BC)⊕ (AD ⊕BD)

(A⊕B)C ⊕ (A⊕B)D

(A⊕B)(C ⊕D)

(AC ⊕ (BC ⊕AD))⊕BD

(AC ⊕ (AD ⊕BC))⊕BD

((AC ⊕AD)⊕BC)⊕BD

(AC ⊕AD)⊕ (BC ⊕BD)A(C ⊕D)⊕B(C ⊕D)

?

?

?

?

6

?

- -

¾

is commutative (the notions for arrows have been omitted, they are obvious).

K10(0⊗ 0) The maps x0, y0 : 0⊗ 0 → 0 coincide.

K11(0⊗ (• ⊕ •)) For any objects A,B the following diagram commutes:

0⊗ (A⊕B) (0⊗A)⊕ (0⊗B)

0 0⊕ 0 .
?

yA⊕B

-v0,A,B

?
yA⊕yB

¾ l⊕0 =r⊕0
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K12((• ⊕ •)⊗ 0) For any objects A,B the following diagram commutes:

(A⊕B)⊗ 0 (A⊗ 0)⊕ (B ⊗ 0)

0 0⊕ 0 .
?

xA⊕B

-wA,B,0

?
xA⊕xB

¾ l⊕0 =r⊕0

K13(0⊗ 1) The maps y1, r
⊗
0 : 0⊗ 1 → 0 coincide.

K14(1⊗ 0) The maps x1, l
⊗
0 : 1⊗ 0 → 0 coincide.

K15(0⊗ • ⊗ •) For any objects A, B the following diagram commutes:

0⊗ (A⊗B) (0⊗A)⊗B

0 0⊗B .
?

yA⊗B

-
a⊗0,A,B

?

yA⊗B

¾ yB

K16(• ⊗ 0 ⊗ •), (• ⊗ • ⊗ 0) For any objects A, B the following diagrams
commute:

A⊗ (0⊗B) (A⊗ 0)⊗B

A⊗ 0 0 0⊗B ,
?

A⊗yB

-
a⊗

A,0,B

?

xA⊗B

-xA ¾yB

A⊗ (B ⊗ 0) (A⊗B)⊗ 0

A⊗ 0 0 .

?

A⊗xB

-
a⊗

A,B,0

?

xA⊗B

-xA

K17(•(0⊕ •)) For any objects A,B the following diagram commutes:

A⊗ (0⊕B) (A⊗ 0)⊕ (A⊗B)

A⊗B 0⊕ (A⊗B)
?

A⊗l⊕
B

-vA,0,B

?
xA⊕(A⊗B)

¾
l⊕
A⊗B
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K18((0⊕•)⊗•), (•⊗(•⊕0)), ((•⊕0)⊗•) For any objects A, B the diagrams

(0⊕A)⊗B (0⊗B)⊕ (A⊗B)

A⊗B 0⊕ (A⊗B) ,
?

l⊕
A
⊗B

-w0,A,B

?
yB⊕(A⊗B)

¾
l⊕
A⊗B

A⊗ (B ⊕ 0) (A⊗B)⊕ (A⊗ 0)

A⊗B (A⊗B)⊕ 0 ,
?

A⊗r⊕
B

-vA,B,0

?
(A⊗B)⊕xA

¾
r⊕

A⊗B

(A⊕ 0)⊗B (A⊗B)⊕ (0⊗B)

A⊗B (A⊗B)⊕ 0
?

r⊕
A
⊗B

-wA,0,B

?
(A⊗B)⊕yB

¾
r⊕

A⊗B

are commutative.

3. Relation between an Ann-category and a ring category

In this section, we prove that the axiomatics of a ring category, without K10,
can be deduced from the axiomatics of an Ann-category. First, we can see that,
the functor morphisms a⊕, a⊗, u, l⊕, r⊕, v, w, in Definiton 2.2 are, respectively,
the functor morphisms a+, a, c, g, d, L, R in Definition 2.1. The isomorphisms
xA, yA coincide with the isomorphisms L̂A, R̂A referred in Proposition 3.2 be-
low.

We now prove that diagrams which commute in a ring category also hold in
an Ann-category.

K1 obviously follows from (ii) in the definition of an Ann-category.
The commutative diagrams K2,K3,K4,K5 are indeed the compatibility of

functor isomorphisms (LA, L̆A), (RA, R̆A) with the constraints a+, c (the axiom
Ann-1).

The diagrams K5 −K9, respectively, are indeed the ones in (Ann-2). Par-
ticularly, K9 is indeed the decomposition of (1.3) where the morphism v is
replaced by its definition diagram:

(P ⊕Q)⊕ (R⊕ S) ((P ⊕Q)⊕R)⊕ S (P ⊕ (Q⊕R))⊕ S

(P ⊕R)⊕ (Q⊕ S) ((P ⊕R)⊕Q)⊕ S (P ⊕ (R⊕Q))⊕ S.

?

v

-a+ ¾a+⊕S

?

(P⊕c)⊕S

-a+ ¾a+⊕S
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Proofs of K17, K18

Lemma 3.1. Let P, P ′ be Gr-categories, (a+, (0, g, d)), (a
′
+, (0

′
, g
′
, d
′
)) be re-

spective constraints, and (F, F̆ ) : P → P ′ be ⊕-functor which is compatible with
(a+, a

′
+). Then (F, F̆ ) is compatible with the unit constraints (0, g, d)), (0

′
, g
′
, d
′
)).

First, the isomorphism F̂ : F0 → 0′ is determined by the composition

u = F0⊕ F0 F (0⊕ 0) F0 0′ ⊕ F0.¾eF -F (g) ¾ g′

Since F0 is a regular object, there exists uniquely the isomorphism F̂ : F0 → 0′

such that F̂ ⊕ idF0 = u. Then, we may prove that F̂ satisfies the diagrams in
the definition of the compatibility of the ⊕-functor F with the unit constraints.

Proposition 3.2. In an Ann-category A, there exist uniquely isomorphisms

L̂A : A⊗ 0 −→ 0, R̂A : 0⊗A −→ 0,

such that the following diagrams

AX A(0⊕X)

0⊕AX A0⊕AX ,

¾LA(g)

?
L̆A

6
g

¾L̂
A⊕id

(2.1)

AX A(X ⊕ 0)

AX ⊕ 0 AX ⊕A0 ,

¾LA(d)

?
L̆A

6
d

¾id⊕L̂A

(2.1’)

AX (0⊕X)A

0⊕AX 0A⊕XA ,

¾RA(g)

?
R̆A

6
g

¾R̂
A⊕id

(2.2)

AX (X ⊕ 0)A

AX ⊕ 0 XA⊕ 0A

¾RA(d)

?
R̆A

6
d

¾id⊕R̂A

(2.2’)

commute, i.e., LA and RA are U-functors respect to the operation ⊕.
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Proof. Since (LA, L̆A) are ⊕-functors which are compatible with the associa-
tivity constraint a⊕ of the Picard category (A,⊕), they are also compatible
with the unit constraint (0, g, d) thanks to Lemma 3.1. That means there ex-
ists uniquely the isomorphism L̂A satisfying the diagrams (2.1) and (2.1’). The
proof for R̂A is similar. The diagrams commute in Proposition 1 are indeed
K17,K18. ¤

Proofs of K15, K16

Lemma 3.3. Let (F, F̆ ), (G, Ğ) be ⊕-functors between ⊕-categories C, C′ which
are compatible with the constraints (0, g, d), (0′, g′, d′) and F̃ : F (0) −→ 0′, G̃ :
G(0) −→ 0′ are respective isomorphisms. If α : F −→ G in an ⊕-morphism
such that α0 is an isomorphism, then the diagram

F0 G0

0′

-α0

@
@RF̂

¡
¡ª Ĝ

commutes.

Proof. Let us consider the diagram:

F0 F (0⊕ 0) G(0⊕ 0) G0

0′ ⊕ F0 F0⊕ F0 G0⊕G0 0′ ⊕G0

u0

id⊕ u0

F (g) u0⊕0 G(g)

F̆ ⊕ id u0 ⊕ u0 Ğ⊕ id

g′ eF eG g′

6

?

? ?

6 6

¾ - -

- - -

(I)

(II) (III) (IV)

(V)

In this diagram, the regions (II) and (IV) commute thanks to the compatibility
of ⊕-functors (F, F̆ ), (G, Ğ) with the unit constraint; the region (III) commutes
since u is a ⊕-morphism; the region (V) commutes thanks to the naturality of
g′. Therefore, the region (I) commutes, i.e.,

Ğ ◦ u0 ⊕ u0 = F̆ ⊕ u0.

Since F0 is a regular object, Ğ ◦ u0 = F̆ . ¤

Proposition 3.4. For any objects X, Y ∈ obA the following diagrams commute

X ⊗ (Y ⊗ 0) X ⊗ 0

(X ⊗ Y )⊗ 0 0 ,

-id⊗bLY

?
a

?
bLX

-bLXY

(2.3)
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0⊗ (X ⊗ Y ) 0

(0⊗X)⊗ Y 0⊗ Y ,

-bRXY

?
a

-bRX⊗id

6
bRY(2.3’)

X ⊗ (0⊗ Y ) (X ⊗ 0)⊗ Y

X ⊗ 0 0 0⊗ Y .

-a

?

id⊗R̂Y

?

bLX⊗id

-bLX ¾bRY

(2.4)

Proof. To prove that the first diagram is commutative, let us consider the
diagram:

X ⊗ (Y ⊗ 0) X ⊗ 0

(X ⊗ Y )⊗ 0 0

-id⊗L̂Y

-
(I)

?
a

?
(II)

Q
Q

Q
Q

Qs

bL

?
L̂X

-L̂XY

where L = LX ◦LY . According to the axiom (1.1), (aX,Y,Z)Z is an ⊕-morphism
from the functor L = LX ◦ LY to the functor G = LXY . Therefore, from
Lemma 3.3, the region (II) commutes. The region (I) commutes thanks to
the determination of L̂ of the composition L = LX ◦ LY . So the perimeter
commutes.

The second diagram is proved similarly, thanks to the axiom (1.1’). To prove
that the diagram (2.4) commutes, let us consider the diagram:

X ⊗ (0⊗ Y ) (X ⊗ 0)⊗ Y

X ⊗ 0 0 0⊗ Y

-a

?
id⊗dRY

@
@

@@R

Ĥ (I)@
@

@@R
(II)

?

dLX⊗id

¡
¡

¡¡ª

K̂
¡

¡
¡¡ª

(III)

-
dLX

¾
dRY

where H = LX ◦ RY and K = RY ◦ LX . Then the regions (II) and (III)
commute thanks to the determination of the isomorphisms H and K. From
the axiom (1.2), (aX,Y,Z)Z is an ⊕-morphism from the functor H to the functor
K. So from Lemma 3.3, the region (I) commutes. Therefore, the perimeter
commutes. The diagrams in Proposition 3.4 are indeed K15,K16. ¤
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Proof of K11

Proposition 3.5. In an Ann-category, the following diagram commutes:

0⊕ 0 0

(0⊗X)⊕ (0⊗ Y ) 0⊗ (X ⊕ Y )

-g0=d0

6
bRX⊕ bRY

6
bRXY

¾L̆0

(2.5)

Proof. Let us consider the diagram:

A(B ⊕ C)⊕ 0(B ⊕ C) A(B ⊕ C)⊕ 0

(AB ⊕AC)⊕ (0B ⊕ 0C) (AB ⊕AC)⊕ (0⊕ 0)

(AB ⊕ 0B)⊕ (AC ⊕ 0C) (AB ⊕ 0)⊕ (AC ⊕ 0)

(A⊕ 0)B ⊕ (A⊕ 0)C AB ⊕AC

(A⊕ 0)(B ⊕ C) A(B ⊕ C)

L̆A ⊕ L̆0

v

R̆B ⊕ R̆C

L̆A⊕0

L̆A ⊕ d−1
0

v

dAB ⊕ dAC

L̆A

R̆B⊕C d

f ′A ⊕ id

(id⊕ id)⊕ ( bRB ⊕ bRC)

(id⊕ bRB)⊕ (id⊕ bRC)

(dA ⊗ id)⊕ (dA ⊗ id)

dA ⊗ id

(I)

(II)

(III)

(IV)

(V)
(VI)

6

?

?

?

6

?

6

?

-

-

-

-

-

-

¾

In this diagram, the region (V) commutes thanks to the axiom I (1.3), the re-
gion (I) commutes thanks to the functorial property of L; the perimeter and the
region (II) commute thanks to the compatibility of the functors RB⊕C , RB , RC

with the unit constraint (0, g, d); the region (III) commutes thanks to the func-
torial property of v; the region (VI) commutes thanks to the coherence for the
ACU-functor (LA, L̆A). So (IV) commutes. Note that A(B ⊕ C) is a regular
object respect to the operation ⊕, so the diagram (2.5) commutes. We have
K11. ¤

Similarly, we have K12.

Proofs of K13, K14

Proposition 3.6. In an Ann-category, we have:

L̂1 = l0, R̂1 = r0.



534 CHE THI KIM PHUNG, NGUYEN TIEN QUANG, AND NGUYEN THU THUY

Proof. We will prove the first equation, the second one is proved similarly. Let
us consider the diagram (2.6). In this diagram, the perimeter commutes thanks
to the compatibility of ⊕-functor (L1, L̆1) with the unit constraint (0, g, d)
respect to the operation ⊕; the region (I) commutes thanks to the functorial
property of the isomorphism l; the region (II) commutes thanks to the functorial
property of g; the region (III) obviously commutes; the region (IV) commutes
thanks to the axiom I(1.4). So the region (V) commutes, i.e.,

L̂1 ⊕ id1.0 = l0 ⊕ id1.0.

Since 1.0 is a regular object respect to the operation ⊕, L̂1 = l0.

0⊕ (1.0) (1.0)⊕ (1.0)

0⊕ 0 0⊕ 0

0⊕ 00

1.0 1.(0⊕ 0)

¾

¾

6

?

Q
QQs

´
´́+

¡
¡¡µ

@
@@I

-

6
?

¾

bL1 ⊕ id

id⊕ l0 l0 ⊕ l0(V )

id

g1.0(2.6) (II) g0 (III) id (IV ) L̆1

g0

l0 (I) l0⊕0

L1(g0) = id⊗ g0

We have K14.
Similarly, we have K13. ¤

Definition 3.1. An Ann-category A is strong if L̂0 = R̂0.

All the above results can be stated as follows.

Proposition 3.7. Each strong Ann-category is a ring category.

Remark. In our opinion, in the axiomatics of a ring category, the compatibility
of the distributivity constraint with the unit constraint (1, l, r) respect to the
operation ⊗ is necessary, i.e., the diagrams of (Ann-3) should be added.

Moreover, if the symmetric monoidal structure of the operation ⊕ is replaced
with the symmetric categorical groupoid structure, then each ring category is
an Ann-category.

An open question: May the equation L̂0 = R̂0 be proved to be independent
in an Ann-category?
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