The Effect of Ions on Thermal Behaviors of Water in Poly(acrylic acid)/Water Mixtures

폴리아크릴산/$H_2O$ 혼합물에서 $H_2O$ 열적 거동에 미치는 이온의 영향

  • Guan, Lan (School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University) ;
  • Xu, Hongyan (School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University) ;
  • Huang, Dinghai (School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University)
  • Received : 2010.03.08
  • Accepted : 2010.04.23
  • Published : 2010.07.25

Abstract

Thermal behaviors of water in the poly(acrylic acid) (PAA)/water mixtures with 0.1 M NaCl, HCl, and NaOH were investigated by DSC. It showed that adding ions in the mixtures affected the crystallization of water evidently. Compared with the PAA/water mixtures, the $T_m$ of freezable bound water in the mixtures with ions moved to lower values and varied with different cations and anions, due to the stabilization or destabilization of the hydrogen-bonding hydration between polymers and water molecules through ionic hydration. The content of non-freezable bound water in the non-crystalline phase of the PAA/water mixtures with ions was not constant, it increased with total water content gradually, owing to the more binding sites created by ions. The ions could change the distribution of different states of water in the polymer aqueous solutions evidently.

Keywords

References

  1. S. W. Shalaby and C. L. McCormick, "Water-Soluble Polymers", ACS Symposium Series, American Chemical Society, G. B. Butler, Editor, Washington DC, Vol 467 (1991).
  2. R. Gref, Q. T. Nguyen, J. Rault, and J. NeeI, Eur. Polym. J., 28, 1007 (1992). https://doi.org/10.1016/0014-3057(92)90332-V
  3. C. Rodehed and B. Rondy, J. Appl. Polym. Sci., 32, 3309 (1986). https://doi.org/10.1002/app.1986.070320132
  4. H. Fushimi, I. Ando, and T. Iijima, Polymer, 32, 241 (1991). https://doi.org/10.1016/0032-3861(91)90009-8
  5. S. Takigami, T. Kimura, and Y. Nakamura, Polymer, 34, 604 (1993). https://doi.org/10.1016/0032-3861(93)90557-Q
  6. Z. H. Ping, Q. T. Nguyen, S. M. Chen, J. Q. Zhou, and Y. D. Ding, Polymer, 42, 8461 (2001). https://doi.org/10.1016/S0032-3861(01)00358-5
  7. K. Nakamur, Y. Minagay, T. Hatakeyam, and H. Hatakeyama, Thermochim. Acta, 416, 135 (2004). https://doi.org/10.1016/j.tca.2003.02.002
  8. Y. Liu and M. B. Huglin, Polγm. Int., 37, 63 (1995). https://doi.org/10.1002/pi.1995.210370108
  9. I. Tranoudis and N. Efron, Contact Lens & Anterior Eye, 27, 193 (2004). https://doi.org/10.1016/j.clae.2004.08.003
  10. F. X. Quinn, V. J. McBriety, A. C. Wilson, and G. D. Friends, Macromolecules, 23, 4576 (1990) https://doi.org/10.1021/ma00223a013
  11. H. Muta, M. Miwa, and M. Satoh, Polymer, 42, 6313 (2001). https://doi.org/10.1016/S0032-3861(01)00098-2
  12. V. Gutmann and R. Schmid, Coord. Chem. Rev., 12, 263 (1974). https://doi.org/10.1016/S0010-8545(00)82023-8
  13. H. Muta, S. Kawauchi, and M. Satoh, Colloid Polym. Sci., 282, 149 (2003). https://doi.org/10.1007/s00396-003-0922-1
  14. S. V. Shevkunov, S. I. Lukyanov, J. M. Leyssale, and C. MiIlot, Chem. Phys., 310, 97 (2005). https://doi.org/10.1016/j.chemphys.2004.10.009
  15. Y. Maeda and H. Kitano, Spectrochim. Acta Part A, 51, 2433 (1995).
  16. J. Ostrowska-Czubenko and M. Gierszewska-Druzynska. Carbohydr. Polym., 77, 590 (2009). https://doi.org/10.1016/j.carbpol.2009.01.036