Self-Curable Humidity-Sensitive Polyelectrolytes Attached to the Alumina Substrate for the Humidity Sensor and their Stability in Water

알루미나 기재에 부착된 습도센서용 자기 가교형 감습성 전해질 고분자의 내수성

  • 한대상 (단국대학교 나노바이오의과학과) ;
  • 공명선 (단국대학교 나노바이오의과학과)
  • Received : 2010.01.12
  • Accepted : 2010.04.07
  • Published : 2010.07.25

Abstract

New cinnamate group-containing copolymers for a self-curable, humidity-sensitive polyelectrolyte and polymeric anchoring agents were prepared by copolymerization of [2-[(methacryloyloxy) ethyl]dimethyl]propyl ammonium bromide(MEPAB), methyl methacrylate(MMA), 3-(trimethoxysilyl) propyl methacrylate(TMSPM) and 2-(cinnamoyloxy)ethyl methacrylate(CEMA). Photocrosslinkable copolymer composed of MEPAB/MMA/TMSPM/CEMA=70/20/0/10 were used for humidity-sensitive membrane, and those of 50/0/20/30 and 0/0/50/50 were used for polymeric anchoring agents. 3- (Triethoxysilyl)propyl cinnamate(TESPC) was also used as a surface-pretreating agent for the comparison of capability of attachment of polyelectrolyte to the electrode surface with polymeric photocurable silanecoupling agents. Pretreatment of the electrode substrate with anchoring agents was performed to form a cinnamate thin film on the electrode through covalent bonds. When the sensors were irradiated with UV light, the anchoring of a polyelectrolyte into the substrate was carried out via the [2$\pi$+2$\pi$] cycloaddition. The resulting sensors using polymeric anchoring agents and TESPC showed water durability with increase of resistance by 60~85%, which is corresponding to the reduction of 2.25~3.15%RH, after soaking in water for 24 h. They showed good hysteresis (-0.2%RH), response time (90 sec) and long-term stability at high temperature and humidity.

신나메이트기를 갖는 새로운 자기 경화형 감습성 고분자 및 고분자형 앵커제로 사용하기 위하여 [2-[(methacryloyloxy) ethyl]dimethyl]propyl ammonium bromide(MEPAB), methyl methacrylate(MMA), 3-(trimethoxysilyl) propyl methacrylate(TMSPM) 및 2-(cinnamoyloxy)ethyl methacrylate(CEMA)의 공중합체들 을 합성하였다. 광가교성 공중합체들로서 MEPAB/MMA/TMSPM/CEMA=70/20/0/10의 조성을 갖는 공중합체는 감습성 전해질 고분자로서, 그리고 50/0/20/30과 0/0/50/50 조성은 고분자형 부착제로 사용하였다. 이들 광가교형 고분자 실란커플링 처리제의 전극 표면과 부착 특성을 비교하기 위하여 3-(triethoxysilyl)propyl cinnamate(TESPC)도 표면 부착을 위한 표면처리제로서 사용하였다. 표면처리제는 전극의 기재 표면 위에 공유결합을 통하여 광가교성 신나 메이트 박막을 형성시킬 수 있었으며 센서에 UV가 조사되었을 때 전해질 고분자가 [2$\pi$+2$\pi$] 환화반응을 이용한 가교반응으로 기재에 부착되었다. 이렇게 고분자 표면처리제 및 TESPC로 처리된 센서들은 24시간 물에 침적시켰을 때 60~85%의 저항 증가가 생겼으며 이것은 상대습도 변화로서 2.25~3.15%RH에 해당하였다. 또한, -0.2%RH 이하의 양호한 히스테리시스, 90초의 응답 및 회복속도, 그리고 80 $^{\circ}C$ 및 90%RH의 고온 고습에서 매우 좋은 신뢰성을 보여주었다.

Keywords

References

  1. Y. Sakai, Y. Sadaoka, and H. Hukumoto, Sens. Actuators, 13, 243 (1988). https://doi.org/10.1016/0250-6874(88)85004-2
  2. M. Hijikigawa, S. Miyosh, T. Sugihara, and A. Jinda, Sens. Actuators, 4, 307 (1983) https://doi.org/10.1016/0250-6874(83)85038-0
  3. M. Ueda, K. Nakarnura, K. Tanaka, H. Kita, and K. Okamoto, Sens. Actuators B, 127, 463 (2007) https://doi.org/10.1016/j.snb.2007.04.042
  4. Y. M. Jeon and M. S. Gong, Macromol. Res., 17, 227 (2009). https://doi.org/10.1007/BF03218684
  5. Y. Sakai, Y. Sadaoka, M. Matsuguchi. N. Moriga, and M. Shimada, Sens. Actuators B, 16, 359 (1989). https://doi.org/10.1016/0250-6874(89)85006-1
  6. M. J. Yang, Y. She, and Y. Li, J. Mater. Sci. Lett., 21, 1477 (2002). https://doi.org/10.1023/A:1020023810360
  7. D. G. Lee, Y. M. Jeon, T. H. Lim, and M. S. Gong, Polymer(Korea), 31, 194 (2007).
  8. D. G. Lee, Y. M. Jeon, T. H. Lim, and M. S. Gong, Polymer(Korea), 31, 302 (2007).
  9. C. W. Lee, H. W. Rhee, and M. S. Gong, Synth. Met., 106 ,177 (1999). https://doi.org/10.1016/S0379-6779(99)00132-0
  10. N. B. Cho, T. H. Lim, Y. M. Jeon, and M. S. Gong, Sens. Actuators B, 130, 594 (2008). https://doi.org/10.1016/j.snb.2007.10.025
  11. Y. Sakail, M. Matsuguchi, and T. Hurukawa, Sens. Actuators B, 66, 135 (2000). https://doi.org/10.1016/S0925-4005(00)00313-0
  12. M. S. Gong, S. W. Joo, and B. K. Choi, J. Mater. Chem., 12, 902 (2002). https://doi.org/10.1039/b108647m
  13. C. W. Lee, D. H. Nam, Y. S. Han, K. C. Chung, and M. S. Gong, Sens. Actuators B, 109, 334 (2005). https://doi.org/10.1016/j.snb.2004.12.070
  14. C. W. Lee, O. Kim, and M. S. Gong, J. Appl. Polym. Sci., 89, 1062 (2003). https://doi.org/10.1002/app.12253
  15. Y. Li, M. J. Yang, and Y. She, Sens. Actuators B, 107, 252 (2005). https://doi.org/10.1016/j.snb.2004.10.008
  16. C. W. Lee, B. K. Choi, and M. S. Gong, Analyst, 129, 651 (2004). https://doi.org/10.1039/b404334k
  17. M. S. Gong, H. W. Rhee, M. H. Lee, Sens. Actuators B, 73, 124 (2001). https://doi.org/10.1016/S0925-4005(00)00668-7
  18. Y. Sakai, M. Matsuguchi, and N. Yonesato, Electrochim. Acta, 46, 1509 (2001). https://doi.org/10.1016/S0013-4686(00)00746-5
  19. Y. Sakai, M. Matsuguchi, Y. Sadaoka, and K. Hirayama, J. Electrochem. Soc., 140, 432 (1993). https://doi.org/10.1149/1.2221063
  20. Z. Yao and M. J. Yang, Sens. Actuators B, 117, 93 (2006). https://doi.org/10.1016/j.snb.2005.10.051
  21. C. W. Lee, B. K. Choi, and M. S. Gong, Sens. Actuators B, 105, 150 (2005). https://doi.org/10.1016/S0925-4005(04)00397-1
  22. H. S. Park, C. W. Lee, and M. S. Gong, Macromol. Res., 12, 311 (2004). https://doi.org/10.1007/BF03218405
  23. H. S. Park, C. W. Lee, J. G. Kim, and M. S. Gong, Macromol. Res., 13, 96 (2005). https://doi.org/10.1007/BF03219021
  24. P. G. Su, I. C. Chen, and R. J. Wu, Anal. Chim. Acta, 449, 103 (2001). https://doi.org/10.1016/S0003-2670(01)01345-9
  25. H. S. Park and M. S. Gong, Macromol. Res., 18, 596 (2010). https://doi.org/10.1007/s13233-010-0605-y
  26. D. S. Han and M. S. Gong, Sens. Actuators B, 147, 330 (2010). https://doi.org/10.1016/j.snb.2010.03.022
  27. Y. M. Joen and M. S. Gong, Polymer(Korea), 33, 19 (2009).
  28. X. Lv, Y. Li, Peng Li, and M. Yang, Sens. Actuators B, 135, 581 (2009). https://doi.org/10.1016/j.snb.2008.10.008
  29. J. P. Fouassier, Photoinitiation, photopolymerization, and photocuring: fundamentals and applications, Hanser Publishers, NewYork, p 2, Chapter 1 (1995).
  30. T. Corrales, F. Catalina, C. Peînado, and N. S. Allen, J. Photochem. Photobiol. A, 159, 103 (2003). https://doi.org/10.1016/S1010-6030(03)00175-8
  31. A. D. Scully, M. A. Horsham, P. Aguas, and J. K. G. Murphy, J. Photochem. Photobiol. A, 197, 132 (2008). https://doi.org/10.1016/j.jphotochem.2007.12.018
  32. O. Prucker, C. A. Naumann, J. Ruhe, W. Knoll, and C. W. Frank, J. Am. Chem. Soc., 121, 8766 (1999). https://doi.org/10.1021/ja990962+
  33. P. Gupta, S. R. Trenor, T. E. Long, and G. L. Wilkes, Macromolecules, 37, 9211 (2004). https://doi.org/10.1021/ma048844g
  34. K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 903 (1997). https://doi.org/10.1021/ma961225q
  35. A. M. Atta, R. A. M. EI-Ghazawy, R. K. Farag, A. F. El-Kafrawy, and A. A. A Abdel-Azim, Polym. Int., 54, 1088 (2005). https://doi.org/10.1002/pi.1820