간의 3T 자기공명영상에서 초상자성산화철 조영증강 급속호흡정지영상기법들간의 양적 및 질적 비교평가

Ferucarbotran-Enhanced Hepatic MRI at 3T Unit: Quantitative and Qualitative Comparison of Fast Breath-hold Imaging Sequences

  • 조경은 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 유정식 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 정재준 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 김주희 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 김기황 (연세대학교 의과대학 강남세브란스병원 영상의학과)
  • Cho, Kyung-Eun (Department of Radiology and Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Yu, Jeong-Sik (Department of Radiology and Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Chung, Jae-Joon (Department of Radiology and Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Kim, Joo-Hee (Department of Radiology and Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Kim, Ki-Whang (Department of Radiology and Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital)
  • 투고 : 2010.02.22
  • 심사 : 2010.05.25
  • 발행 : 2010.06.30

초록

목적: 간의 국소병변에 대한 3T 자기공명영상에서 초상자성산화철 조영증강영상을 얻기 위한 여러 급속호흡정지대열들의 상대적 가치를 평가하고자 하였다. 대상 및 방법: 간의 자기공명영상을 시행하였던 환자들 중 한 개 이상의 악성 고형병소를 가진 102명의 연속으로 모은 환자들을 대상으로 초상자성산화철 조영제의 정맥주사 후 촬영한 3종류의 각각 다른 에코시간(2.4 msec [GRE_2.4], 5.8 msec [GRE_5.8], and 10 msec [GRE_10])을 갖는 $T2^*$ 강조 경사에코영상들과 하나의 T2 강조 고속스핀에코영상(TSE)을 비교하였다. 두 명의 관찰자가 독립적으로 간의 윤곽, 혈관지표, 인공물, 병변의 명확도에 대해 각각 4점 스케일로 질적분석을 시행하였다. 양적분석을 위해 1 cm 이상의 크기를 갖는 170개의 병변들(간세포암 107개, 담도암 9개, 간전이암 54개)에 대하여 대조도잡음비를 측정하였다. 결과: GRE_5.8은 간윤곽, 혈관지표, 인공물에 대해 질적으로 가장 높은 점수를 받았으며(p<.001) 간 병변의 명확도는 GRE_5.8과 GRE_10간에 유의한 차이가 없었다(p=.414). 전체적으로 평균 대조도잡음비는 GRE_10($24.4{\pm}14.5$), GRE_5.8($14.8{\pm}9.4$), FSE($9.7{\pm}6.3$), GRE_2.4($7.9{\pm}6.4$)의 순으로 높았으며(p<.001), 영상기법에 상관없이 담관암과 전이암의 평균 대조도잡음비가 간세포암에 비해 높았다(p<0.05). 결론: 3T 기기에서 악성 고형 간 병변의 진단을 위한 초상자성산화철 조영증강 급속 호흡정지기법들 중 5.8 msec의 중등도의 에코시간을 갖는 경사에코영상은 10 msec의 에코시간에 비해 대조도잡음비가 낮지만 전체적인 양적 및 질적 평가를 종합하여 볼 때 가장 우수한 영상을 제공할 수 있다.

Purpose : To compare the relative values of various fast breath-hold imaging sequences for superparamagnetic iron-oxide (SPIO)-enhanced hepatic MRI for the assessment of solid focal lesions with a 3T MRI unit. Materials and Methods : 102 consecutive patients with one or more solid malignant hepatic lesions were evaluated by spoiled gradient echo (GRE) sequences with three different echo times (2.4 msec [GRE_2.4], 5.8 msec [GRE_5.8], and 10 msec [GRE_10]) for $T2^*$-weighted imaging in addition to T2-weighted turbo spin echo (TSE) sequence following intravenous SPIO injection. Image qualities of the hepatic contour, vascular landmarks and artifacts were rated by two independent readers using a four-point scale. For quantitative analysis, contrast-to-noise ratio (CNR) was measured in 170 solid focal lesions larger than 1 cm (107 hepatocellular carcinomas, nine cholangiocarcinomas and 54 metastases). Results : GRE_5.8 showed the highest mean points for hepatic contour, vascular anatomy and imaging artifact presence among all of the subjected sequences (p<0.001) and was comparable (p=0.414) with GRE_10 with regard to lesion conspicuity. The mean CNRs were significantly higher (p<0.001) in the following order: GRE_10 ($24.4{\pm}14.5$), GRE_5.8 ($14.8{\pm}9.4$), TSE ($9.7{\pm}6.3$), and GRE_2.4 ($7.9{\pm}6.4$). The mean CNRs of CCCs and metastases were higher than those of HCCs for all imaging sequences (p<0.05). Conclusion : Regarding overall performances, GRE using a moderate echo time of 5.8 msec can provide the most reliable data among the various fast breath-hold SPIO-enhanced hepatic MRI sequences at 3T unit despite the lower CNR of GRE_5.8 compared to that of GRE_10.

키워드

참고문헌

  1. Van Beers BE, Gallez B, Pringot J. Contrast-enhanced MR iaging of the liver. Radiology 1997;203:297-306
  2. Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998;8:1198- 1204 https://doi.org/10.1007/s003300050535
  3. von Falkenhausen M, Meyer C, Lutterbey G, et al. Intraindividual comparison of image contrast in SPIO-enhanced liver MRI at 1.5T and 3.0T. Eur Radiol 2007;17:1256-1261 https://doi.org/10.1007/s00330-006-0484-y
  4. Chang JM, Lee JM, Lee MW, et al. Superparamagnetic iron oxide-enhanced liver magnetic resonance imaging-comparison of 1.5T and 3.0T imaging for detection of focal malignant liver lesions. Invest Radiol 2006;41:168-174 https://doi.org/10.1097/01.rli.0000192417.33989.7a
  5. Ramalho M, Altun E, Here′dia V, Zapparoli M, Semelka R. Liver MR imaging: 1.5T versus 3T. Magn Reson Imaging Clin N Am 2007;15:321-347 https://doi.org/10.1016/j.mric.2007.06.003
  6. von Falkenhausen MM, Lutterbey G, Morakkabati-Spitz N, et al. High-field-strength MR imaging of the liver at 3.0T: Intraindividual comparative study with MR imaging at 1.5T. Radiology 2006;241:156-166 https://doi.org/10.1148/radiol.2411051221
  7. Kim T, Murakami T, Hori M, Onishi H, Tomoda K, Nakamura H. Effect of superparamagnetic iron oxide on tumor-to-liver contrast at $T2^{*}$-weighted gradient-echo MRI: comparison between 3.0T and 1.5T MR systems. J Magn Reson Imaging 2009;29:595-600 https://doi.org/10.1002/jmri.21384
  8. Nakada T. Clinical Experience on 3.0T systems in Niigata, 1996 to 2002. Invest Radiol 2003;38:377-384
  9. Ward J, Guthrie JA, Wilson D, et al. Colorectal hepatic metastases: detection with SPIO-enhanced breath-hold MR imaging-comparison of optimized sequences. Radiology 2003;228:709-718 https://doi.org/10.1148/radiol.2283020376
  10. Kim MJ, Kim JH, Choi JY, et al. Optimal TE for SPIOenhanced gradient-recalled echo MRI for the detection of focal hepatic lesions. AJR Am J Roentgenol 2006;187:W255- W266 https://doi.org/10.2214/AJR.05.0706
  11. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR Imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0T : preliminary results. Radiology 2004;230:652-659 https://doi.org/10.1148/radiol.2303021331
  12. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984;11:425-448 https://doi.org/10.1118/1.595535
  13. Zapparoli M, Semelka RC, Altun E, et al. 3.0-T MRI evaluation of patients with chronic liver diseases : initial observations. Magn Reson Imaging 2008;26:650-660 https://doi.org/10.1016/j.mri.2008.01.037
  14. Hahn PF, Stark DD, Weissleder R, Elizondo G, Saini S, Ferrucci JT. Clinical application of superparamagnetic iron oxide to MR imaging of tissue perfusion in vascular liver tumors. Radiology 1990;174:361-366 https://doi.org/10.1148/radiology.174.2.2296646
  15. Schneider G, Reimer P, Mabmann A, Kirchin MA, Morana G, Grazioli G. Contrast agents in abdominal imaging-current and future directions. Top Magn Reson Imaging 2005;16:107-124 https://doi.org/10.1097/01.rmr.0000189025.80743.5c
  16. Bellin MF, Zaim S, Auberton E, et al. Liver metastases: safety and Efficacy of detection with superparamagnetic iron oxide in MR imaging. Radiology 1994;193:657-663 https://doi.org/10.1148/radiology.193.3.7972804
  17. Matsuo M, Kanematsu M, Itoh K, et al. Detection of malignant hepatic tumors with ferumoxides-enhanced MRI: Comparison of five gradient-recalled echo sequences with different TEs. AJR Am J Roentgenol 2004;182:235-242 https://doi.org/10.2214/ajr.182.1.1820235
  18. Yoshikawa T, Mitchell DG, Hirota S, et al. Gradient- and spin-echo T2-weighted imaging for SPIO-enhanced detection and characterization of focal liver lesions. J Magn Reson Imaging 2006;23:712-719 https://doi.org/10.1002/jmri.20572
  19. Ward J, Chen F, Guthrie JA, et al. Hepatic lesion detection after superparamagnetic iron oxide enhancement: comparison of five T2-weighted sequences at 1.0 T by using alternativefree response receiver operating characteristic analysis. Radiology 2000;214:159-166 https://doi.org/10.1148/radiology.214.1.r00ja21159
  20. Kurokawa H, Togami I, Tsunoda M, Hiraki Y. Experimental study of fast and ultrafast T2-weighted imaging sequences using AMI-25 superparamagnetic iron oxide (SPIO). Acta Med Okayama 2001;55:41-50
  21. Kumano S, Murakami T, Kim T, et al. Using superparamagnetic iron oxide-enhanced MRI to differentiate metastatic hepatic tumors and nonsolid benign lesions. AJR Am J Roentgenol 2003;181:1335-1339 https://doi.org/10.2214/ajr.181.5.1811335
  22. Tanimoto A, Yuasa Y, Shinmoto H, et al. Superparamagnetic iron oxide-mediated hepatic signal intensity change in patients with and without cirrhosis: pulse sequence effects and Kupffer cell function. Radiology 2002;222:661-666 https://doi.org/10.1148/radiol.2223010690
  23. Kanematsu M, Itoh K, Matsuo M, et al. Malignant hepatic tumor detection with ferumoxides-enhanced MR imaging with a 1.5-T system: comparison of four imaging pulse sequences. J Magn Reson Imaging 2001;13:249-257 https://doi.org/10.1002/1522-2586(200102)13:2<249::AID-JMRI1036>3.0.CO;2-C
  24. Elizondo G, Weissleder R, Stark DD, et al. Hepatic cirrhosis and hepatitis: MR imaging enhanced with superparamagnetic iron oxide. Radiology 1990;174:797-801 https://doi.org/10.1148/radiology.174.3.2305063
  25. Zech CJ, Herrmann KA, Dietrich O, Horger W, Reiser MF, Schoenberg SO. Black-blood diffusion-weighted EPI acquisition of the liver with paraller imaging. Comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol 2008;43:261-266 https://doi.org/10.1097/RLI.0b013e31816200b5
  26. Kuwatsuru R, Brasch RC, Muhler A, et al. Definition of liver tumors in the presence of diffuse liver disease: comparison of findings at MR imaging with positive and negative contrast agents. Radiology 1997;202:131-138 https://doi.org/10.1148/radiology.202.1.8988202
  27. Tanimoto A, Yuasa Y, Shinmoto H, et al. Superparamagnetic iron oxide-mediated hepatic signal intensity change in patients with and without cirrhosis: pulse sequence and Kupffer cell function. Radiology 2002;222:661-666 https://doi.org/10.1148/radiol.2223010690
  28. Tanimoto A, Oshio K, Suematsu M, Pouliquen D, Stark DD. Relaxation effects of clustered particles. J Magn Reson Imaging 2001;14:72-77 https://doi.org/10.1002/jmri.1153
  29. Tang Y, Yamashita Y, Arakawa A, et al. Detection of hepatocellular carcinoma arising in cirrhotic livers: comparison of gadolinium and ferumoxides-enhanced MR imaging. AJR Am J Roentgenol 1999;172:1547-1554 https://doi.org/10.2214/ajr.172.6.10350287