Understanding Statistical Terms: A Study with Secondary School and University Students

  • Received : 2009.06.17
  • Accepted : 2010.06.29
  • Published : 2010.06.30

Abstract

In this paper, we present an analysis of how students understand some statistical terms, mainly from inferential statistics, which are taught at the high school level. We focus our analysis on those terms that present more difficulties and are persistent in spite of having been studied until the college level. This analysis leads us to a hierarchical classification of responses at different levels of understanding using the SOLO theoretical framework.

Keywords

References

  1. Batanero, C.; Díaz, C. & Cobo, B. (2003). Reliability and generalizability. Applications in educative evaluation. (in Spanish: Fiabilidad y generalizabilidad. Aplicaciones en evaluación educativa.) Numeros 54, 3–21. ME 2003f.05418
  2. Biggs, J. B. & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York, NY: Acadmic Press. ME 1985c.03244
  3. Biggs, J. B. & Collis, K. F.(1991). Multimodal Learning and the Quality of Intelligent Behavior. In: H. A. H. Rowe (Ed.), Intelligence: Reconceptualization and measurement (pp. 57–76). Hillsdale, NJ: Erlbaum.
  4. Dickson, L.; Brown, M. & Gibson, O. (1991). El aprendizaje de las matematicas. Madrid, Spain: Labor.
  5. Friel, S. N.; Curcio, F. R. & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. J. Res. Math. Educ. 32(2), 124–158. ME 2005d.01807 https://doi.org/10.2307/749671
  6. García Alonso, I. & García Cruz, J. A. (2007). Statistical Inference in textbooks: Mathematical and everyday contexts. In: Jeong-Ho Woo (Ed.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education (PME-31), Seoul, Korea; July 8–13, 2007. Vol. 2 (pp. 257–264). Seoul: Korea Society of Educational Studies in Mathematics. ME 2008c.00468
  7. García Cruz, J. A. & Garrett, A. J. (2008). Understanding the arithmetic mean: A study with secondary and university students. J. Korea Soc. Math. Educ. Ser. D 12(1), 49–66. ME 2008d.00397
  8. Kahnemann, D.; Slovic, P. & Tversky, A. (1982). Judgement under uncertainty: Heuristics and biases. Cambridge, UK: Cambridge University Press.
  9. Konold, C. & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. J. Res. Math. Educ. 33(4), 259–289. ME 2002f.05408 ERIC EJ667020 https://doi.org/10.2307/749741
  10. Mendenhall, W. (1982). Introducción a la probabilidad y la estadística. Belmont, CA: Wadsworth Int.
  11. Mokros, J. & Russell, S. J. (1995). Children's Concepts of Average and Representativeness. J. Res. Math. Educ. 26 (1), 20–39 ME 1995f.03881 ERIC EJ496903 https://doi.org/10.2307/749226
  12. Moore, D. (2005). Estadística aplicada basica. Barcelona, Spain: Antoni Bosch Editor.
  13. National Council of Teachers of Mathematics (NCTM.) (2000). Principles and standards for school mathematics. Reston, VA: NCTM. ME 1999f.0937 for discussion draft (1998)
  14. Niss, M. (2003). Mathematical competencies and the learning of mathematics. The Danish KOM project. In: A. Gagatsis, & S. Papastavridis (Eds.), Proceedings of the 3rd Mediterranean conference on mathematical education: Mathematics in the modern world, mathematics and didactics, mathematics and life, mathematics and society, held at Athens, Greece; Jan. 3–5, 2003 (pp. 115–124). Athens, Greece: Hellenic Mathematical Society. ME 2003b.01179
  15. Orton, A. (1990). Didáctica de las Matemáticas. Madrid, Spain: MEC y Morata.
  16. Real Academia Espanola (R. A. E.) (2001). Diccionario de la lengua espanola. Madrid, Spain: R. A. E.
  17. Shaughnessy, J. M. (2007). Research on Statistics Learning and Reasoning. In: F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 957–1010). Greenwich, CT: Information Age Publishing, Inc. / National Council of Teachers of Mathematics
  18. Shuard, H. & Rothery, A. (Eds.) (1984). Children reading mathematics. London: Murray.
  19. Strauss, S. & Bichler, E. (1988). The development of children's concepts of the arithmetic average. J. Res. Math. Educ. 19(1), 64–80. ME 1988d.01776 https://doi.org/10.2307/749111
  20. Swan, M (2008). Designing a Multiple Representation Learning Experience in Secondary Algebra. Journal of the International Society for Design and Development in Education 1(1), on line. http://www.eduactionaldesigner.org/ed/volume1/issue1/article3/index.htm