DOI QR코드

DOI QR Code

Seismic Analysis of Tunnel in Transverse Direction Part I: Estimation of Seismic Tunnel Response via Method of Seismic Displacement

터널 횡방향 지진해석 Part I: 응답변위법을 통한 터널의 지진응답 예측

  • Park, Du-Hee (Dept. of Civil and Environmental Engrg. Hanyang Univ.) ;
  • Shin, Jong-Ho (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Yun, Se-Ung (Dept. of Civil and Environmental Engrg., Hanyang Univ.)
  • 박두희 (한양대학교 건설환경공학과) ;
  • 신종호 (한양대학교 건설환경공학과) ;
  • 윤세웅 (한양대학교 건설환경공학과)
  • Received : 2010.05.10
  • Accepted : 2010.06.28
  • Published : 2010.06.30

Abstract

Recent earthquakes have demonstrated that the tunnels, which were once considered to be highly resistant to earthquakes, are susceptible to substantial damage under severe seismic loading. Among various modes of deformation under an earthquake loading, the response of the tunnel in the transverse direction is known to be the critical mode. This paper investigates the seismic response of the tunnel in the transverse direction using the method of seismic displacement, which is a type of pseudo-static analysis. Firstly, the methods of calculating the ground deformation are compared. It is shown that the single and double cosine may not provide an accurate estimation of the ground deformation, and that a one-dimensional site response analysis needs to be performed for a more reliable evaluation. Secondly, the tunnel responses are calculated using the simplified, analytical, and numerical solutions. It is demonstrated that the simplified method provides poor estimates of the tunnel response ground deformation. The analytical solution is shown to be effective in modeling circular tunnels in uniform ground, but has serious limitation in modeling tunnel response in non-uniform ground. Numerical analyses are shown to be applicable to all cases, and give the most accurate estimates of the tunnel response. It is also demonstrated that the linear solutions can be so conservative that the soil nonlinearity needs to be accounted for more accurate evaluation of the tunnel response.

지진에 대하여 상당히 저항력이 높다고 알려진 터널도 최근 국외에서 발생한 대 지진들에 의해서 심각한 피해를 입은 사례가 지속적으로 발생하고 있으며 터널 내진설계의 필요성을 입증하고 있다. 지진동에 대하여 터널에 발생하는 다양한 변형모드 중에서 횡방향 전단변형이 가장 치명적인 모드로 알려졌다. 본 논문에서는 횡방향 터널의 지진해석을 유사정적해석의 일종인 응답변위법으로 수행하였다. 먼저, 지반 내 변위를 계산한 결과 단일 및 이중 코사인법의 예측결과는 정확하지 않을 수 있으니 주의해야 하며 1차원 지반응답해석을 수행하는 것이 적절한 것으로 나타났다. 나아가 터널의 응답을 단순해, 해석해, 그리고 연속체 수치해석으로 계산하였다. 비교 결과, 단순해는 터널의 응답을 정확하게 예측하지 못하는 것으로 나타났다. 해석해는 균질 지반과 원형터널에서는 적절하나 비균질 지반에서는 적절하지 않은 것으로 나타났다. 수치해석은 모든 경우에 적용 가능한 가장 정확한 방법인 것으로 나타났다. 또한, 선형해석은 보수적이며 지반의 비선형성을 고려하는 것이 적절한 것으로 나타났다.

Keywords

Acknowledgement

Grant : 해저시설물 차폐기술연구

References

  1. 박두희, 신종호, 윤세웅 (2010), "터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측", 한국지반공학회 논문집, 제 26권, 6호.
  2. 윤종구, 김동수, 유제남 (2003), "지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 관한 연구", 한국지반공학회 논문집, 제 19권, 4호, pp.211-222.
  3. 이인모, 안대진 (2001), "터널구조물의 내진해석", 한국터널공학회 논문집, 제 3권, 4호, pp.3-15.
  4. 일본운수성 (1999), 지중구조물 내진설계 표준 및 동해설, 과학기술, p.1-650.
  5. 志波由紀夫, and 岡本晋 (1991), "シ一ルドトンネルの地震面方向の地震時斷面力の計算法", 土木學會論文集, Vol.437, p.193-202.
  6. 한국도로교통협회 (2000), 도로교설계기준, 건설정보사, pp.1-474.
  7. 한국지반공학회 (2006), 지반구조물의 내진설계, 한국지반공학회, p.1-655.
  8. 한국지반공학회 (2010), 상호검증을 통한 지진 지반응답해석 이해.
  9. Amorosi, A., and Boldini, D. (2009), "Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils", Soil Dynamics and Earthquake Engineering, Vol.29, No.6, pp. 1059-1072. https://doi.org/10.1016/j.soildyn.2008.12.004
  10. Hashash, Y.M.A. (2002), "Seismic design of underground structures: role of numerical modeling", North American Tunneling, Seattle, WA.
  11. Hashash, Y.M.A., Park, D., and Yao, J.I.C. (2005), "Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures", Tunnelling and Underground Space Technology, Vol.20, No.5, pp.435-441. https://doi.org/10.1016/j.tust.2005.02.004
  12. Hoeg, K. (1968), "Stresses against underground structural cylinders", Journal of the Soil Mechanics and Foundation Division, Vol.94, No.SM4, pp.833-858.
  13. Idriss, I.M., and Sun, J.I. (1992), "SHAKE91: A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits": Department of Civil and Environmental Engineering, University of California Davis.
  14. Itasca (2008), "FLAC (Fast Lagrangian Analyses of Continua) v.6.0", Ontario, Canada.
  15. Park, D., and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", Journal of Earthquake Engineering, Vol.8, No.2, pp.249-274.
  16. Peck, R.B., Hendron, A.J., and Mohraz, B. (1972), "State of the art in soft ground tunneling", Rapid Excavation and Tunneling Conference, New York, NY: American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol., pp.259-286.
  17. Penzien, J. (2000), "Seismically induced racking of tunnel linings", International Journal of Earthquake Engineering and Structural Dynamics, Vol.29, pp.683-691. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<683::AID-EQE932>3.0.CO;2-1
  18. Schwartz, C.W., and Einstein, H.H. (1980), Improved design of tunnel supports: Volume 1, Simplified analysis for ground-structure interaction in tunneling, UMTA-MA-06-0100-80-4, Urban Mass Transit Transportation Administration, MA.
  19. Towhata, I. (2008), Geotechnical earthquake engineering, Springer Verlag, pp.1-684.
  20. Wang, J.N. (1993), "Seismic Design of Tunnels: A State-of-the-Art Approach", Monograph 7. New York, NY: Parsons Brinckerhoff Quade & Douglas, Inc.