DOI QR코드

DOI QR Code

GRIM-19 Expression and Function in Human Gliomas

  • Jin, Yong-Hao (Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School) ;
  • Jung, Shin (Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School) ;
  • Jin, Shu-Guang (Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School) ;
  • Jung, Tae-Young (Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School) ;
  • Moon, Kyung-Sub (Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School) ;
  • Kim, In-Young (Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School)
  • Received : 2009.09.29
  • Accepted : 2010.06.21
  • Published : 2010.07.28

Abstract

Objective : We determined whether the expression of GRIM-19 is correlated with pathologic types and malignant grades in gliomas, and determined the function of GRIM-19 in human gliomas. Methods : Tumor tissues were isolated and frozen at $-80^{\circ}C$ just after surgery. The tissues consisted of normal brain tissue (4), astrocytomas (2), anaplastic astrocytomas (2), oligodendrogliomas (13), anaplastic oligodendrogliomas (11), and glioblastomas (16). To profile tumor-related genes, we applied RNA differential display using a $Genefishing^{TM}$ DEG kit, and validated the tumor-related genes by reverse transcription polymerase chain reaction (RT-PCR). A human glioblastoma cell line (U343MG-A) was used for the GRIM-19 functional studies. The morphologic and cytoskeletal changes were examined via light and confocal microscopy. The migratory and invasive abilities were investigated by the simple scratch technique and Matrigel assay. The antiproliferative activity was determined by thiazolyl blue Tetrazolium bromide (MTT) assay and FACS analysis. Results : Based on RT-PCR analysis, the expression of GRIM-19 was higher in astrocytic tumors than oligodendroglial tumors. The expression of GRIM-19 was higher in high-grade tumors than low-grade tumors or normal brain tissue; glioblastomas showed the highest expression. After transfection of GRIM-19 into U343MG-A, the morphology of the sense-transfection cells became larger and more spindly. The antisensetransfection cells became smaller and rounder compared with wild type U343MG-A. The MTT assay showed that the sense-transfection cells were more sensitive to the combination of interferon-$\beta$ and retinoic acid than U343MG-A cells or antisense-transfection cells; the antiproliferative activity was related to apoptosis. Conclusion : GRIM-19 may be one of the gene profiles which regulate cell death via apoptosis in human gliomas.

Keywords

Acknowledgement

Supported by : Chonnam National University

References

  1. Alchanati I, Nallar SC, Sun P, Gao L, Hu J, Stein A, et al. : A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene 25 : 7138-7147, 2006 https://doi.org/10.1038/sj.onc.1209708
  2. Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV : Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem 275 : 33416-33426, 2000 https://doi.org/10.1074/jbc.M003929200
  3. Ashkenazi A, Dixit VM : Death receptors : signaling and modulation. Science 281 : 1305-1308, 1998 https://doi.org/10.1126/science.281.5381.1305
  4. Chelbi-Alix MK, Pelicano L, Quignon F, Koken MH, Venturini L, Stadler M, et al. : Induction of the PML protein by interferons in normal and APL cells. Leukemia 9 : 2027-2033, 1995
  5. Chelbi-Alix MK, Quignon F, Pelicano L, Koken MH, The H : Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 72 : 1043-1051, 1998
  6. Chidambaram NV, Angell JE, Ling W, Hofmann ER, Kalvakolanu DV : Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. J Interferon Cytokine Res 20 : 661-665, 2000 https://doi.org/10.1089/107999000414844
  7. Darnell JE Jr : STATs and gene regulation. Science 277 : 1630-1635, 1997 https://doi.org/10.1126/science.277.5332.1630
  8. Der SD, Zhou A, Williams BR, Silverman RH : Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95 : 15623-15628, 1998 https://doi.org/10.1073/pnas.95.26.15623
  9. Faria TN, Mendelsohn C, Chambon P, Gudas LJ : The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid-associated growth arrest. J Biol Chem 274 : 26783-26788, 1999 https://doi.org/10.1074/jbc.274.38.26783
  10. Fearnley IM, Carroll J, Shnnon RJ, Runswick MJ, Walker JE, Hirst J : GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH : ubiquinone oxidoreductase (complex I). J Biol Chem 276 : 38345-38348, 2001 https://doi.org/10.1074/jbc.C100444200
  11. Gianni M, Terao M, Fortino L, Licalzi M, Viggiano V, Barbui T, et al. : Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 89 : 1001-1012, 1997
  12. Glass CK, Rose DW, Rosenfeld MG : Nuclear receptor coactivators. Curr Opin Cell Biol 9 : 222-232, 1997 https://doi.org/10.1016/S0955-0674(97)80066-X
  13. Gognora C, David G, Pintard L, Tissot C, Hua TD, Dejean A, et al. : Molecular cloning of a new interferon-induced PML nuclear bodyassociated protein. J Biol Chem 272 : 19457-19463, 1997 https://doi.org/10.1074/jbc.272.31.19457
  14. Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR : Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32 : 74-89, 2006 https://doi.org/10.1016/j.ctrv.2006.01.003
  15. Hara A, Hirose Y, Yoshimi N, Tanaka T, Mori H : Expression of Bax and bcl-2 proteins, regulators of programmed cell death, in human brain tumors. Neurol Res 19 : 623-628, 1997 https://doi.org/10.1080/01616412.1997.11740871
  16. Hofman ER, Boyanapalli M, Lindner DJ, Weihua X, Hassel BA, Jagus R, et al. : Thioredoxin reductase mediates cell death effects of the combination of beta interferon and retinoic acid. Mol Cell Biol 18 : 6493-6504, 1998
  17. Hong WK, Itri, LM : Retinoids and human cancer in Sporn MB, Roberts AB, Goodman DS (eds) : The Retinoids : Biology, Chemistry and Medicine, ed 2. New York : Raven Press, 1994, pp597-630
  18. Hu J, Angell JE, Zhang, J, Ma X, Seo T, Raha A, et al. : Characterization of monoclonal antibodies against GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. J Interferon Cytokine Res 22 : 1017-1026, 2002 https://doi.org/10.1089/107999002760624242
  19. Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, et al. : GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 24 : 8447-8456, 2004 https://doi.org/10.1128/MCB.24.19.8447-8456.2004
  20. Iolascon A, Della Ragione F, Giordani L, Serra A, Saglio G, Faienza MF : Expression of cell cycle regulatory genes in chronic myelogenous leukemia. Haematologica 83 : 771-777, 1998
  21. Kalvakolanu DV : Interferons and cell growth control. Histol Histopathol 15 : 523-537, 2000
  22. Kaplan DH, Shankaran V, Dighe AS, Stockert EM, Aguet M, Old LJ, et al. : Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95 : 7556-7561, 1998 https://doi.org/10.1073/pnas.95.13.7556
  23. Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY : Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 36 : 424-426, 428 passion, 2004
  24. Kolla V, Weihua X, Kalvakolanu DV : Modulation of interferon action by retinoids. Induction of murine STAT1 gene expression by retinoic acid. J Biol Chem 272 : 9742-9748, 1997 https://doi.org/10.1074/jbc.272.15.9742
  25. Korsmeyer SJ : BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59 : 1693s-1700s, 1999
  26. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR : Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278 : 1630-1632, 1997 https://doi.org/10.1126/science.278.5343.1630
  27. Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, et al. : Survival following surgery and prognostic factors for recently diagnosed malignant glioma : data from the Glioma Outcomes Project. J Neurosurg 99 : 467-473, 2003 https://doi.org/10.3171/jns.2003.99.3.0467
  28. Leist M, Jaattela M : Four deaths and a funeral : from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2 : 589-598, 2001 https://doi.org/10.1038/35085008
  29. Lin RJ, Egan DA, Evans RM : Molecular genetics of acute promyelocytic leukemia. Trends Genet 15 : 179-184, 1999 https://doi.org/10.1016/S0168-9525(99)01710-2
  30. Lindner DJ, Borden EC, Kalvakolanu DV : Synergistic antitumor effects of a combination of interferons and retinoic acid on human tumor cells in vitro and in vivo. Clin Cancer Res 3 : 931-937, 1997
  31. Love JM, Gudas LJ : Vitamin A, differentiation and cancer. Curr Opin Cell Biol 6 : 825-831, 1994 https://doi.org/10.1016/0955-0674(94)90051-5
  32. Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT, et al. : GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 17 : 1325-1335, 2003
  33. Ma X, Kalakonda S, Srinivasula SM, Reddy SP, Platanias LC, Kalvakolanu DV : GRIM-19 associates with the serine protease HtrA2 for promoting cell death. Oncogene 26 : 4842-4849, 2007 https://doi.org/10.1038/sj.onc.1210287
  34. Mangelsdorf DJ, Evans RM : The RXR heterodimers and orphan receptors. Cell 83 : 841-850, 1995 https://doi.org/10.1016/0092-8674(95)90200-7
  35. Matikainen S, Ronni T, Lehtonen A, SarenevaT, Melen K, Nordling S et al. : Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons. Cell Growth Differ 8 : 687-698, 1997
  36. Maximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, et al. : Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer 92 : 1892-1898, 2005 https://doi.org/10.1038/sj.bjc.6602547
  37. Moore DM, Kalvakolanu DV, Lippman SM, Kavanagh JJ, Hong WK, Borden EC, et al. : Retinoic acid and interferon in human cancer : mechanistic and clinical studies. Semin Hematol 31 : 31-37, 1994
  38. Nason-Burchenal K, Gandini D, Botto M, Allopenna J, Seala JR, Cross NC, et al. : Interferon augments PML and PML/RAR alpha expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid-resistant promyelocytic cell line. Blood 88 : 3926-3936, 1996
  39. Pollack IF, Finkelstein SD, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, et al. : Age and TP53 mutation frequency in childhood malignant gliomas : results in a multi-institutional cohort. Cancer Res 61 : 7404-7407, 2001
  40. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD : How cells respond to interferons. Annu Rev Biochem 67 : 227-264, 1998 https://doi.org/10.1146/annurev.biochem.67.1.227
  41. Sen GC, Ransohoff RM : Transcriptional Regulation in the Interferon System, Molecular Biology Intelligence Unit. Austin, TX : Chapman & Hall, 1997
  42. Tait MJ, Petrik V, Loosemore A, Bell BA, Papadopoulos MC : Survival of patients with glioblastoma multiforme has not improved between 1993 and 2004 : analysis of 625 cases. Br J Neurosurg 21 : 496-500, 2007 https://doi.org/10.1080/02688690701449251
  43. Thornberry NA, Lazebnik Y : Caspases : enemies within. Science 281 : 1312-1316, 1998 https://doi.org/10.1126/science.281.5381.1312
  44. Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, et al. : Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 66 : 159-167, 2006 https://doi.org/10.1158/0008-5472.CAN-05-0077
  45. Ushio Y, Tada K, Shiraishi S, Kamiryo T, Shinojima N, Kochi M, et al. : Correlation of molecular genetic analysis of p53, MDM2, p16, PTEN, and EGFR and survival of patients with anaplastic astrocytoma and glioblastoma. Front Biosci 8 : e281-e288, 2003 https://doi.org/10.2741/865
  46. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, et al. : Role of PML in cell growth and the retinoic acid pathway. Science 279 : 1547-1551, 1998 https://doi.org/10.1126/science.279.5356.1547
  47. Wisniewski P, Ellert-Miklaszewska A, Kwiatkowska A, Kaminska B : Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFkappaB-TIMP-2 pathway. Cell Signal 22 : 212-220, 2010 https://doi.org/10.1016/j.cellsig.2009.09.016
  48. Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF, et al. : The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci U S A 100 : 9342-9347, 2003 https://doi.org/10.1073/pnas.1633516100
  49. Zhang X, Huang Q, Yang Z, Li Y, Li CY : GW112, a novel antiapoptotic protein that promotes tumor growth. Cancer Res 64 : 2474-2481, 2004 https://doi.org/10.1158/0008-5472.CAN-03-3443

Cited by

  1. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae) vol.39, pp.5, 2010, https://doi.org/10.1007/s11033-011-1311-3
  2. Characterization of a β‐1,3‐glucan recognition protein from the beet armyworm, Spodoptera exigua (Insecta: Lepidoptera: Noctuidae) vol.20, pp.5, 2010, https://doi.org/10.1111/j.1744-7917.2012.01538.x