Distribution of Zooplankton by ADCP's Echo Intensity in the Coastal Water used Yellow Loess

다층 도플러 유속계(ADCP)를 이용한 황토 살포 해역의 플랑크톤 평가

  • Park, Ju-Sam (The Fisheries Science Institute, Chonnam National University) ;
  • Choo, Hyo-Sang (Fisheries Ocean Science Division, Chonnam National University) ;
  • Moon, Sung-Ryong (Department of Biology, Gangneung-Wonju National University)
  • 박주삼 (전남대학교 수산과학연구소) ;
  • 추효상 (전남대학교 해양기술학부) ;
  • 문성룡 (강릉원주대학교 생물학과)
  • Received : 2010.04.09
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

Harmful algal blooms (HABs), commonly known as red tides, are aquatic phenomena caused by the rapid growth and accumulation of certain microalgae, which can lead to marked discoloration of surface waters, and severe impacts on public health, commerce, and the environment. In South Korea, the red tides have been a serious and recurrent problem, especially along the south coast. Plenty of yellow loess was used to control an outbreak of the red tides for 15 years from 1996 until now. Yellow loess was almost sprayed in the vicinity of a large fish farming industry. In this research, the distribution characteristics and density distribution of zooplankton were investigated in autumn (Oct. 2008) and spring (Apr. 2009) using volume backscattering strength (SV) calculated by the zooplankton collected with north pacific standard (NORPAC) net and the echo intensity measured with ADCP at stations on the study area in the spraying ocean of yellow loess (SOYL), and the non-spraying ocean of yellow ocean (NOYL) by the red tide generating every year. The species number and the individuals per unit volume of the zooplankton collected in NOYL was high and it which was collected in SOYL was low. As a result of comparing the volume backscattering strength ($SV_c$) calculated by species and length of the zooplankton collected with NORPAC net with the volume backscattering strength ($SV_m$) calculated by the echo intensity measured with ADCP at stations on the study area, although $SV_c$ and $SV_m$ of NOYL were generally in agreement, $SV_m$ of SOYL was higher than $SV_c$ 4.3dB, i.e. ADCP is greatly influenced by suspended solid in SOYL. The horizontal distribution map of $SV_m$ at the study area in autumn (Oct. 2008) and spring (Apr. 2009) was drawn. $SV_m$ of SOYL is higher than NOYL and autumn is higher than spring. $SV_m$ can suppress the overestimate or underestimate of $SV_c$.

우리나라에서는 적조가 발생하면 적조발생 해역에 황토를 살포하고 있다. 황토가 살포되는 해역은 대부분 가두리 양식장 주변이며 매년 권장 살포량이상으로 대량 살포되고 있다. 본 연구에서는 지금까지 적조가 발생하여 매년 황토가 살포되어온 해역과 황토가 살포되지 않은 해역을 대상으로 추계(2008년 10월)와 춘계(2009년 4월)에 플랑크톤 네트에 의한 채집과 ADCP에 의한 체적산란강도를 계측하여 플랑크톤 분포특성과 플랑크톤의 분포밀도를 조사하였다. 황토를 살포하지 않은 해역에서 채집된 생물의 종수 및 단위체적당 개체수는 높았으나, 황토를 살포한 해역에서는 낮았다. 각 정점에서 채집한 플랑크톤의 종별, 체장별 개체수와 분포밀도의 평균치를 이용한 체적산란강도 $SV_c$와 ADCP에 의해 계측된 체적산란강도 $SV_m$를 비교해 본 결과, 황토를 살포하지 않은 해역의 $SV_c$$SV_m$는 거의 일치하였으나, 황토를 살포한 해역의 $SV_m$$SV_c$보다 4.3 dB 높았다. 즉 황토를 살포한 해역에서는 부유물이 ADCP에 크게 영향을 미치고 있음을 확인하였다. ADCP에 의해 계측된 체적산란강도의 수평분포도에서 체적산란강도는 황토를 살포한 해역이 황토를 살포하지 않은 해역보다 높았으며, 봄철이 가을철보다 높았다. 또한 체적산란강도 추정에 ADCP를 이용하면 채집에 의한 분포밀도의 과대 또는 과소평가를 방지할 수 있음을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 박주삼(2005), 수산음향계측장치의 탐지범위에 대한 연구, 한국어업기술학회지, 제41권, 제1호, pp. 54-63.
  2. Broughton, E. A. and R. G. Lough(2006), A direct comparison of MOCNESS and video plankton recorder zooplankton abundance estimates: possible applications for augmenting net sampling with video systems, Deep-Sea Research II, Vol. 53, Issues 22-24, pp. 2789-2807. https://doi.org/10.1016/j.dsr2.2006.08.013
  3. Deines, K. L.(1999), Backscatter estimation using bro adband acoustic doppler current profilers, Proceedings of the IEEE Sixth Working Conference on Current Measurement, San Diego, CA, March 11-13, 1999, pp. 249-253.
  4. Dou S.(1995), Food utilization of adult Flatfishes cooccurring in the bohai sea of China. Neth. J. Sea Res., Vol. 34, Issues 1-3, pp. 183-193. https://doi.org/10.1016/0077-7579(95)90026-8
  5. Fielding, S., G. Griffiths and H. S. J. Roe(2004), The biological validation of ADCP acoustic backscatter through direct comparison with net samples and model predictions based on acoustic-scattering models, ICES J. Mar. Sci., Vol. 61, No. 2, pp. 184-200. https://doi.org/10.1016/j.icesjms.2003.10.011
  6. Flagg, C. N. and S. L. Smith(1989), On the use of the acoustic doppler current profiler to measure zooplankton abundance, Deep-Sea Research I, Vol. 36, Issue 3, pp. 455-474. https://doi.org/10.1016/0198-0149(89)90047-2
  7. Foote, K. G., T. Knutsen, A. E. Bekkevold, P. Dalpadado and S. E. Johannessen(1996), Initial, collateral measurements of some properties of Calanus finmarchicus, ICES C.M., L.21 Ref. B, p. 23.
  8. Francois, R. E. and G. R. Garrison(1982), Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption, J. Acoust. Soc. Am., Vol. 72, Issue 6, pp. 1879-1890. https://doi.org/10.1121/1.388673
  9. Furusawa, M., Y. Miyanohana, M. Ariji and Y. Sawada(1994), Prediction of krill target strength by liquid prolate spheroid model, Fisheries Science, Vol. 60, No. 3, pp. 261-265. https://doi.org/10.2331/fishsci.60.261
  10. Greene, C. H.(1989), Analyzing zooplankton size distri butions using high-frequency sound, Limnol. Oceanogr., Vol. 34, No. 1, pp. 129-139. https://doi.org/10.4319/lo.1989.34.1.0129
  11. Greene, C. H., P. H. Wiebe, R. T. Miyamoto and J. Burczynski(1991), Probing the fine structure of ocean sound-scattering layers with ROVERSE technology, Limnol. Oceanogr., Vol. 36, No. 1, pp. 193-204. https://doi.org/10.4319/lo.1991.36.1.0193
  12. Greenlaw, C. F.(1979), Acoustical estimation of zoopla nkton populations, Limnol. Oceanogr., Vol. 24, No. 2, pp. 226-242. https://doi.org/10.4319/lo.1979.24.2.0226
  13. Herman, A. W.(1992), Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep-Sea Research I, Vol. 39, Issues 3-4, pp. 395-415. https://doi.org/10.1016/0198-0149(92)90080-D
  14. Hewitt, R. P. and D. A. Demer(1991), Krill abundance, Nature, Vol. 353, p. 310.
  15. Johnson, R. K.(1977a), Acoustic estimation of scattering -layer composition, J. Acoust. Soc. Am., Vol. 61, Issue 6, pp. 1636-1639. https://doi.org/10.1121/1.381440
  16. Johnson, R. K.(1977b), Sound scattering from a fluid sphere revisited, J. Acoust. Soc. Am., Vol. 61, Issue 2, pp. 375-377. https://doi.org/10.1121/1.381326
  17. Labat, J. P., S. Gasparini, L. Mousseau, L. Prieur, M. Boutoute and P. Mayzaud(2009), Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined with an optical plankton counter: relationships with environmental structures, Deep-Sea Research I, Vol. 56, Issue 10, pp. 1742-1756. https://doi.org/10.1016/j.dsr.2009.05.013
  18. Labat, J. P., P. Mayzaud, S. Dallot, A. Errhif, S. Razouls and S. Sabini(2002), Mesoscale distribution of zooplankton in the Sub-Antarctic Frontal system in the Indian part of the Southern Ocean: a comparison between optical plankton counter and net sampling, Deep-Sea Research I, Vol. 49, Issue 4, pp. 735-749. https://doi.org/10.1016/S0967-0637(01)00076-0
  19. Mackenzie, K. V.(1981), Nine-term equation for sound speed in the oceans, J. Acoust. Soc. Am., Vol. 70, Issue 3, pp. 807-812. https://doi.org/10.1121/1.386920
  20. MacLennal, D. N. and D. V. Holliday(1996), Fisheries and plankton acoustics: past, present, and future, ICES J. Mar. Sci., Vol. 53, No. 2, pp. 513-516. https://doi.org/10.1006/jmsc.1996.0074
  21. Madureira, L. S. P., P. Ward and A. Atkinson(1993), Differences in backscattering strength determined at 120 and 38 kHz for three species of Antarctic macroplankton, Mar. Ecol. Prog. Ser., Vol. 93, pp. 17-24. https://doi.org/10.3354/meps093017
  22. Pieper, R. E.(1979), Euphausiid distribution and biomass determined acoustically at 102 kHz, Deep-Sea Research I, Vol. 26, Issue 6, pp. 687-702. https://doi.org/10.1016/0198-0149(79)90041-4
  23. Pieper, R. E., D. E. McGehee, C. F. Greenlaw and D. V. Holliday(2001), Acoustically measured seasonal patterns of zooplankton in the Arabian Sea, Deep-Sea Research II, Vol. 48, Issues 6-7, pp. 1325-1343. https://doi.org/10.1016/S0967-0645(00)00141-7
  24. Pinto, A. M. F., E. Von Sperling and R. M. Moreira(2001), Chlorophyll-a determination via continuous measurement of plankton fluorescence: methodology development, Wat. Res., Vol. 35, No. 16, pp. 3977-3981. https://doi.org/10.1016/S0043-1354(01)00102-6
  25. RD Instruments(1996), Acoustic doppler current profiler : principles of operation, a practical primer, San Diego, California, U.S.A., p. 52.
  26. Richter, K. E.(1985), Acoustic determination of smallscale distributions of individual zooplankters and zooplankton aggregations, Deep-Sea Research I, Vol. 32, Issue 2, pp. 163-182. https://doi.org/10.1016/0198-0149(85)90026-3
  27. Shannon, C. E. and W. Wiener(1963), The mathematical theory of communication, Urbana, Univ. of Illinois Press, p. 125.
  28. Smith, P. E., M. D. Ohman and L. E. Eber(1989), Analysis of the patterns of distribution of zooplankton aggregations from an acoustic doppler current profiler, CaLCOFI Rep., Vol. 30, pp. 88-103.
  29. Wade, I. P. and K. J. Heywood(2001), Acoustic backs catter observations of zooplankton abundance and behaviour and the influence of oceanic fronts in the northeast Atlantic, Deep-Sea Research II, Vol. 48, Issues 4-5, pp. 899-924. https://doi.org/10.1016/S0967-0645(00)00113-2
  30. 李坰勳(2005), ドップラー流向流速計(ADCP)を用いた音響散乱層の生物密度推定と種判別に関する研究, 北海道大學大學院, 博士論文, p. 100.
  31. 古澤昌彦(1995), 音響による動物プランクトン計測の展望, 海洋音響學會誌, 第24券, 第3号, pp. 162-169.
  32. 日本氣象廳編(1990), 海洋観測指針, 財団法人日本氣象協會, pp. 211-221.