동해 지역의 프리에어 이상으로부터 완전부우게 이상의 계산

Computation of Complete Bouguer Anomalies from Free-air Anomalies in East Sea

  • 윤홍식 (성균관대학교 사회환경시스템공학과) ;
  • 이동하 (성균관대학교 공과대학) ;
  • 김용현 (성균관대학교 건설환경시스템공학과)
  • 투고 : 2010.03.31
  • 심사 : 2010.05.08
  • 발행 : 2010.06.30

초록

본 연구는 Sandwell 및 DNSC08 해상중력모델로부터 구한 프리에어 이상으로부터 동해 지역의 완전부우게 이상을 구한 결과를 설명한 것이다. 완전부우게 보정은 부우게 보정(Bullard A), 곡률보정(Bullard B)과 지형보정(Bullard C)의 세 부분으로 구성된다. 각 보정량의 계산을 위하여 전지구 기복모델인 ETOPO1을 통해 1분 간격의 표고데이터(지형 및 수심)를 취득하여 이용하였으며, 지형(해수)의 밀도로는 $2,670kg/m^3$($1,030kg/m^3$)의 수치를 일괄적으로 적용하였다. DNSC08 모델을 이용하여 계산된 완전부우게 이상은 동해 지역에 대하여 약 -34.390~267.925mGal의 분포를 나타내었으며, Sandwell 모델의 경우 -32.446~266.967mGal의 분포를 나타내었다. 또한, 두 모델 간 완전부우게 이상의 차이는 평균 $0.036{\pm}2.373mGal$로 계산되었으며, 가장 큰 완전부우게 이상값은 가장 낮은 수심분포를 보이는 위도 $42{\sim}43^{\circ}N$ 및 경도 $137{\sim}139^{\circ}E$ 사이의 지역에서 나타났다. 이러한 수치를 통해 DNSC08과 Sandwell 모델의 중력분포가 동해 지역에 대해 매우 유사한 것을 알 수 있었으며, 위성기반의 해상중력모델이 동해 지역의 지구물리학적, 지질학적, 측지학적 특성의 해석에 효율적으로 이용될 수 있다고 판단되었다.

This paper describes the results of complete Bouguer anomalies computed from the Free-air anomalies that derived from Sandwell and DNSC08 marine gravity models. Complete bouguer corrections consist of three parts: the bouguer correction (Bullard A), the curvature correction (Bullard B) and the terrain correction (Bullard C). These all corrections have been computed over the East Sea on a $1'{\times}1'$elevation data (topography and bathymetry) derived from ETOPO1 global relief model. In addition, a constant topographic (sea-water) density of $2,670kg/m^3$($1,030kg/m^3$) has been used for all correction terms. The distribution of complete bouguer anomalies computed from DNSC08 are -34.390 ~ 267.925 mGal, and those from Sandwell are -32.446 ~ 266.967 mGal in East Sea. The mean and RMSE value of the difference between DNSC08 and Sandwell is $0.036{\pm}2.373\;mGal$. The highest value of complete bouguer anomaly are found around the region of $42{\sim}43^{\circ}N$ and $137{\sim}139^{\circ}E$ (has the lowest bathymetry) in both models. These values show that the gravity distribution of both models, DNSC08 and Sandwell, are very similar. They indicate that satellite-based marine gravity model can be effectively used to analyze the geophysical, geological and geodetic characteristics in East Sea.

키워드

참고문헌

  1. 이동하 (2008), 한국의 고정밀 합성지오이드 모델 개발, 박사학위논문, 성균관대학교.
  2. 이동하, 윤홍식, 위광재, 황학 (2008), 제주도 지역의 정밀지오이드 모델 개발, 한국측량학회지, 한국측량학회, 제 26권, 제 1호, pp. 51-61.
  3. 황학, 윤홍식, 이동하 (2009a), CG-5 상대중력계를 이용한 중력관측 및 중력망조정에 관한 연구, 한국측량학회지, 한국측량학회, 제 27권, 제 1호, pp. 69-78.
  4. 황학, 윤홍식, 이동하, 정태준 (2009b), 남한지역에서의 초고차항 중력장모델 EGM2008의 정확도 분석, 대한토목학회논문집, 대한토목학회, 제 29권, 제 1D호, pp. 161-166.
  5. Amante, C. and Eakins, B. W. (2009), ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24.
  6. Andersen, O. B., Knudsen, P. and Berry, P. A. M. (2010), The DNSC08GRA global marine gravity field from double retracked satellite altimetry, Journal of Geodesy, Vol. 84, No. 3, pp. 191-199. https://doi.org/10.1007/s00190-009-0355-9
  7. Bajracharya, S. (2003), Terrain effects on geoid determination, Ph.D dissertation, University of Calgary, Canada.
  8. Banerjee, P. (1998), Gravity measurements and terrain corrections using a digital terrain model in the NW Himalaya, Computers & Geosciences, Vol. 24, No. 10, pp. 1009- 1020. https://doi.org/10.1016/S0098-3004(97)00134-9
  9. Berndt, C. (2002), Residual Bouguer satellite gravity anomalies reveal basement grain and structural elements of the Voring Margin, off Norway, Norwegian Journal of Geology, Vol. 82, pp. 283-288.
  10. Blais, J. A. R. and Ferland, R. (1984), Optimization in gravimetric terrain corrections, Canadian Journal of Earth Sciences, Vol. 21, pp. 505-515. https://doi.org/10.1139/e84-055
  11. Bullard, E. C. (1936), Gravity measurements in East Africa, Phil. Trans. Roy. Soc. London, Vol. 235, pp. 445-534. https://doi.org/10.1098/rsta.1936.0008
  12. Carbo, A., Munoz-Martin, A., Llanes, P. and Alvarez, J. (2003), Gravity analysis offshore the Canary Islands from a systematic survey, Marine Geophysical Researches, Vol. 24, No. 1-2, pp. 113-127. https://doi.org/10.1007/s11001-004-1336-2
  13. Cogbill, A. H. (1979), The relationship between crustal structure and seismicity in the Western Great Basin, Ph.D dissertation, Northwestern University, USA.
  14. Cogbill, A. H. (1990), Gravity terrain corrections calculated using digital elevation models, Geophysics, Vol. 55, No. 1,pp. 102-106. https://doi.org/10.1190/1.1442762
  15. Denker, H. and Roland, M. (2003), Compilation and Evaluation of a Consistent Marine Gravity Data Set Surrounding Europe, IUGG 2003, Sapporo, Japan, pp. 248- 253.
  16. Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, R., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D. (2007), The shuttle radar topography mission, Reviews of Geophysics, Vol. 45, RG2004, doi:10.1029/2005RG000183.
  17. Flis, M. F., Butt, A. L. and Hawke, P. J. (1998), Mapping the range front with gravity-are the corrections up to it?, Exploration Geophysics, Vol. 29, pp. 378-383. https://doi.org/10.1071/EG998378
  18. Forsberg, R. (1985), Gravity field terrain effect computations by FFT, Bull. Geod., Vol. 59, pp. 342-360. https://doi.org/10.1007/BF02521068
  19. Fullea, J., Fernandez, M. and Zeyen, H. (2008), FA2BOUGA FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone, Computers & Geosciences, Vol. 34, pp. 1665-1681. https://doi.org/10.1016/j.cageo.2008.02.018
  20. Hammer, S. (1939), Terrain correction for gravimeter stations, Geophysics, Vol. 4, No. 3, pp. 184-194. https://doi.org/10.1190/1.1440495
  21. Hastings, D. A. and Dunbar, P. K. (1998), Development and assessment of the global land one-km base elevation digital elevation model (GLOBE), International Society of Photogrammetry and Remote Sensing, Archives, Vol. 32, No. 4, pp. 218-221.
  22. Hayford, J. F. and Bowie, W. (1912), The effect of topography and isostatic compensation upon the intensity of gravity, Bulletin of the American Geographical Society, Vol. 44, No. 6, pp. 464-465. https://doi.org/10.2307/199909
  23. Hwang, C., Wang, C. G. and Hsiao, Y. S. (2003), Terrain correction computation using Gaussian quadrature, Computers & Geosciences, Vol. 29, pp. 1259-1268. https://doi.org/10.1016/j.cageo.2003.08.003
  24. LaFehr, T. R. (1991), An exact solution for the gravity curvature (Bullard B) correction, Geophysics, Vol. 56, No. 8, pp. 1178-1184.
  25. Luis, J. F., Miranda, J. M., Galdeano, A. and Patriat, P. (1998), Constraints on the structure of the Azores spreading center from gravity data, Marine Geophysical Researches, Vol. 20, No. 3, pp. 157-170. https://doi.org/10.1023/A:1004698526004
  26. Marks, K. M. (1996), Resolution of the Scripps/NOAA marine gravity field from satellite altimetry, Geophysical Research Letters, Vol. 26, pp. 2069-2072.
  27. Nagy, D. (1966), The prism method of terrain corrections using digital computers, Pure Applied Geophysics, Vol. 63, pp. 31-39. https://doi.org/10.1007/BF00875156
  28. Nowell, D. A. G. (1999), Gravity terrain corrections-an overview, Journal of Applied Geophysics, Vol. 42, pp. 117- 134. https://doi.org/10.1016/S0926-9851(99)00028-2
  29. Parker, R. L. (1996), Improved Fourier terrain correction: Part II, Geophysics, Vol. 61, No. 2, pp. 365-372. https://doi.org/10.1190/1.1443965
  30. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K. (2007), Earth gravitational model to degree 2160, status and progress, In: Paper presented at XXIV general assembly, International Union of Geodesy and Geophysics, Perugia, Italy, pp. 2-13.
  31. Sandwell, D. T. and Smith, W. H. F. (1997), Marine gravity anomalies from GEOSAT and ERS-1 satellite altimetry, Journal of Geophysical Research, Vol. 102, pp. 10039- 10054. https://doi.org/10.1029/96JB03223
  32. Sandwell, D. T. and Smith, W. H. F. (2009), Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate, J. Geophys. Res., Vol. 114, B01411, doi:10.1029/2008JB006008.
  33. Swick, C. H. (1942) Pendulum Gravity Measurements and Isostatic Reductions, US Coast and Geodetic Survey special publication 232, US Coast and Geodetic Survey, Washington DC.
  34. Tsoulis, D. (2001), Terrain correction computations for a densely sampled DTM in the Bavarian Alps, Journal of Geodesy, Vol. 75, No. 5-6, pp. 291-307. https://doi.org/10.1007/s001900100176
  35. Wang, Y. M. (2000), The Satellite Altimeter Data Derived Mean Sea Surface GSFC98, Geophysical Research Letters, Vol. 27, pp. 701-704. https://doi.org/10.1029/1999GL002375
  36. Whitman, W. W. (1991), A microgal approximation for the Bullard B-earth's curvature-gravity correction, Geophysics, Vol. 56, No. 12, pp. 1980-1985. https://doi.org/10.1190/1.1443009