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A Seat Inventory Management Model in the Presence
of Dependent Demands

Sang-Won Kim**

@ Abstract m-

When airlines sell the same seats on an air flight at different fares, demand for a fare class depends on demand
for other fare classes due to demand dependency. Demand dependencies occur when customers will buy other fare
class tickets if the originally requested fare were unavailable, or when customers postpone their purchase decisions
in anticipation of reopening of the lower fare in the next period. Demand dependency as a result customer buying
behavior has a considerable profit implication, which was ignored in many earlier studies. We investigate the impact
of demand dependency on the optimal booking limits and the expected revenues under a single-period and a two-period

setting. We show how to find optimal booking limits of the problem and provide numerical examples to illustrate
the impact

Keywords : Airline Revenue Management, Airline Application, Demand Dependency

1. Introduction terprises such as airlines. Airline revenue man-
agement is the application of information sys-

Revenue management has made significant tems and pricing strategies to allocate the right
contributions to the profitability of service en- capacity to the right customer at the right place
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at the right timé (Kimes, 1989). There has been
substantial literature in the form of journal ar-
ticles, conference proceedings and literature sur-
veys in airline revenue management. McGill and
Van Ryzin (1999) classified the major areas of
airline revenue management as forecasting, over-
booking, seat inventory allocation and pricing.
Seats on an air flight are products that can be
offered to different fare class customers for dif-
ferent prices. Seat inventory allocation is con-
cerned with the allocation of the finite seat in—
ventory to the different fare classes over time.
Through historical records in the various fare
classes, an airline would adjust seat inventory
levels between classes in order to maximize ex-
pected revenue. The first published research on
airline seat inventory allocation (Littlewood,
1972) provided a useful analysis of a two-fare-
class model of seat allocation on a single flight
leg. Littlewood (1972) suggested that the point
of closing down the low fare class was when
the expected marginal revenue from selling an
additional low fare seat was exceeded by the
expected marginal revenue of selling the same
seat at the high fare. Belobaba (1987, 1989) ex-
tended Littlewood (1972) work to the cases of
multiple fare classes and developed the EMSR
(Expected Marginal Seat Revenue) heuristic ap-
proach for nested booking classes in which
Littlewood's (1972) rule was applied sequentially,
known generally as “EMSR-a.” The booking
limit is defined to be the maximum number of
seats that might be sold at the low price, and
the protection level is the number of seats that
would be sold to high fare customers because
high fare customers might book later in the
booking period. Belobaba also developed a var-
iant of the EMSR method, known as “EMSR-b”

(Belobaba, 1992). The EMSR-b heuristic model
provided seat protection levels closer to optimal

~ values than those from the EMSR-a. The sol-

utions by the EMSR-b are calculated jointly for
all high fare classes relative to a given low fare
class based on a weighted combination of all
classes above the one for which a booking limit
is calculated. The EMSR-b heuristic model can
be repeatedly applied to allow for multiple periods.

Methods for obtaining optimal booking limits
with more than two fare classes are provided
in Curry (1990), Brumelle and McGill (1993), Wol-
Imer (1992), and Robinson (1995), These authors
pointed out that EMSR solutions were not opti—
mal when considered more than two fare clas-
ses, and developed optimal rules for multi-fare-
class problems independently : The basic logic
of all these methods is that the discount seats
are offered until the contribution of the sale is
less than the expected contribution from the sale
of seats to all the remaining fare classes while
EMSR approach considers the next highest fare
only. All of these studies were performed in-
dependently and the demands between fare
classes are assumed to be independent. How-
ever, many flexible travelers would take a high
fare ticket if low fare tickets were unavailable.
This type of customer buying behavior, which
results in demand dependencies, is referred to as
customer diversion (Pfeifer, 1989). Specifically,
buy- up refers to customers’ buying a high fare
when low fares are closed whereas buy-down
refers to the substitution of a low fare ticket for
a high fare customer when low fares are still
open. Waiting is denoted for situations when
customers postpone their purchase decisions in
anticipation of opening of the low price ticket
in the next period, and it is referred to as a kind
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of strategic customer behavior. Actually, cus-
tomer might decide to wait for the reopening of
a low fare in the future if the low fare tickets
were sold out in the current period.

Pfeifer (1989) examined a two-fare, single-
period airline seat allocation problem and devel-
oped heuristic decision rules to incorporate cus—
tomer diversion, where a customer might buy
a more expensive fare ticket if a less expensive
fare ticket was not available. Pfeifer’s approach
was to find the booking limit for the low-fare
seats (g) for which the total expected profit at
g+l was less than that at g using marginal
analysis. Bodily and Weatherford (1995) devel-
oped heuristic decision rules for a single-period
model with more than three fare classes includ-
ing customer diversion (which was based on
Pfeifer’s (1989) model) and presented numerical
results using simulation. Belobaba and Wea-
therford (1996) developed new heuristic decision
rules for multi-period models. They extended
the decision rule derived by Bodily and Wea-
therford (1995), and they also developed a com—
bined heuristic decision rule for more than three
fare classes; the decision algorithm combined
the seat allocation rule of the EMSR-b model
with joint protection logic and the extended de-
cision rule derived by Bodily and Weatherford
(1995).

An individual customer is interested in buying
the same ticket as cheap as possible. Customers’
knowledge of seat inventory allocation process
and prices as a function of time has made new
opportunities for buying cheap tickets possible.
Research on strategic customer behavior can be
an important in airline seat allocation area be-
cause customers might engage in strategic pur-
chasing behavior. Lazear (1986) studied strate-

gic customer behavior and pricing strategy un-
der the retailing settings and concluded custom-
ers might wait for low price items unless they
perceive that there is a large demand for the
item. Anderson and Wilson (2003) studied mul-
ti-period seat inventory allocation with waiting
(as strategic customer behavior) and buy-down,
and the booking limits were set by the EMSR-b.
They investigated the impact of customer di-
version on the total expected profit in their
model. They argued that this was the case for
the low demand flights or flights with drasti-
cally discounted fare seats.

Research on finding optimal results (optimal
booking limits) for the single-period, two-fare-

class problem with customer diversion have

- been studied, but more robust analytical results

with managerial implications were done by Sen
and Zhang (1999). Sen and Zhang (1999) consid-
ered a single-item, single—period stochastic in-
ventory problem or the newsvendor problem,
where the item could be sold to different demand
classes at different prices. Sen and Zhang (1999)
decide both optimal values for the initial ca-
pacity and the booking limit simultaneously.
Although Sen and Zhang's (1999) model provi-
des a nice analytical work for airline seat alloca-
tion including diversion, they do not consider
strategic customer behavior.

In this e-commerce age, customers are be-
coming more familiar with the existence of pric-
ing and booking structures (or seat allocation)
employed by the airline companies. Therefore,
customer buying behavior is becoming more
complex and has a meaningful profit implication.
We explore how much additional revenue poten-—
tial exists, and we study how an airline can
change its strategy for setting up optimal book-
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ing limits that make adjustments to the EMSR
type seat allocation method on the assumption
that customer diversion occurs. The purpose of
this study is to investigate the impacts of de-
mand dependency on the optimal booking limit
and the total expected. '

2. The Mathematical Model

We extend Sen and Zhang's (1999) one-period
model to a two-period model where the basic
assumptions are the same. Sen and Zhang (1999)
considered a single-period stochastic inventory
problem with two demand classes segmented by
time and price and suggested a booking limit
type optimal policy for this problem. The origi-
nally independent demands are stochastic with
known probability distributions and are as-
sumed to be realized sequentially in a single pe-
riod; low-fare customers arrive before high—fare
customers. Once the low-fare class is closed, it
will never reopen. The high-fare class custom-
ers buy only the high~fare tickets. In their mod-
el, overbooking is not allowed, and a customer
does not buy more than two tickets, and cus-
tomer diversion is modeled by assuming that a
fixed portion of the unsatisfied demand for low
fare would join the demand for high fare, which
is usually defined as the willingness of potential
customers to purchase tickets in a different fare
class from one they originally requested. We de-
velop a two—period model additionally assuming
that a fraction of customers who cannot pur-
chase a low-fare ticket in period 1 will wait until
period 2 in the hope that a low-fare will become
available, as well as we consider buying-up
customers in each period. Under these assump-
tions we develop a two-period model where air~

line companies can have opportunities for the
reallocation of seats to fare classes in each
period. We use the following notation for the
two-period problem :
¢ capacity at the beginning of period 1
¢ : capacity at the beginning of period 2
r, * unit revenue from saver (low) fare
r, - unit revenue from full (high) fare
d, : fraction of buying-up in period {
w  fraction of waiting from period 1 to period 2
D,; : demand for fare class j in period i
fi;(Dy) - pdf of D;
F,;(D;) “cdf. of D,
I, * booking limit in period i
EXD,) : expected demand for fare class j in peri-
od i
Eln,(1,)] © total expected revenue from saver and
full fare classes in period i
m () : total revenue from saver and full fare
classes in period i
ER (D;}) : expected revenue from saver fare
class in period 1
ER (D},) * expected revenue from full fare class
in period 1
ER,(c, 1, 1,(c), Dy, Dy,) * the expected revenue
from both fare classes
in period 2 without
censored demand from
period 1-uncensored
demand case
ER(c, 1, (e 1), Dy, D) : the expected revenue
from both fare classes
in period 2 without
censored demand from
period 1-censored
demand case
ER,,.(1,) * the total expected revenue from both
period



2.1 Two-Period Model

For analytical interpretation of the two-period
model, we divide the total expected revenue of
the two-period model into :

1. The total expected revenue from period 1;

2. The total expected revenue from period 2

where there are waiting customers from
period 1 (censored demand case), and;

3. The total expected revenue from period 2

where there are no waiting customers from
period 1 (uncensored demand case),

For given demand parameters in period 1 and
2, the optimal booking limit in period 2 is differ-
ent due to the remaining capacity at the end of
period 1 and the number of waiting customers.
In our two-period model, we find the first period
booking limit to maximize the total expected
revenue from both periods, which include both
censored demand cases and uncensored demand
cases in period 2. For the censored demand case,
the actual demand in period 2 becomes the origi-
nal demand plus the waiting customers from pe-
riod 1. In this case, where all |, low-fare seats
were sold out, the only thing we know is that
the low—fare demand is bigger than the booking
limit in period 1. For the uncensored demand
case, we do not need to consider waiting cus-
tomers from period 1 to calculate the expected
revenue from period 2. Now we introduce the
mathematical model for the two-period problem.

Let £ (c) be the optimal booking limit in period
2 where the remaining capacity from period 1
is ¢, and the first period booking limit 7, is not
reached in period 1, and let (e, 1,) be the optimal
booking limit in period 2 where the remaining
capacity at the end of period 1 is ¢ and the book-

ing limit in period 1 is reached. ER,(D]}) is the
expected revenue from the saver—fare class in
period 1, and ER (D) is the expected revenue
from the full-fare demand in period 1 where Dj;

and Dy, are the actual sales for each fare class

in period 1
D;1 =min {D,, ll}
+ _[min {C-Dyy, D} if Dy s
127 Imin {C—1, Dy +dy (D, —~ 1)} i Dy >0

ER,(c, 1, I (c), Dy, Dy,) is the total expected
revenue from both demand classes in period 2
where the booking limit in period 1, 1, is not
reached and the remaining capacity at the end
of period 1 is ¢. Therefore, there are no waiting
customers. In this case, the optimal booking
limit in period 2 is determined by the remaining
capacity because there are no waiting custo-
mers. ER,(c L, (e 1), Dy, Dy,) is the total ex-
pected revenue in period 2 where the booking
limit in period 1, 1, is reached and the remaining
capacity at the end of period 1 is ¢ In this case,
the optimal booking limit in period 2 for a spe-
cific problem is determined by the remaining ca-
pacity because and the number of waiting
customers. D}, and D}, are the actual sales for

each fare class in period 2 :

D}y =min {D},, L}

b= min {Cmf?2l,1)22} A ifl:?21 <l
" min {C'lw Dzz+d2(D21“lz)} if Dy >1,

where D,, =D, +w(D,—1,)*
e= (0~ ~ Dy, —d, (D, —, N
Then, the total expected revenue from both

periods ERy,,.,(1,) (as a function of ) is given
by
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ERp,, (1) = ER, (D},)+ ER, (D;,) [VAD)

* h * * *
+ [7 [ Er e 1, 50, Dy, D)
0 0
fll (Dll)lel f12 (DIZ)dD12

w [T 7 R, e 1), Dy, DY)
o vy
fll (Dll)lelfIZ (D12)dD12

In (2.1), the total expected revenue from peri-
od 1 is expressed :

ER,(D},)+ER,(D,) =, F{D;,) +r,BXD},)

where

. 4L . o
2D})= [ 'Dusu 040, + [ s, (2)ap,
. L po-Dy
E(Du) Zfo _/0 Diyf1s (D12)dD12f11(D11)dD11

L poo
+ [ [ (€-D)B,)iD,1, (D,)aD,

o c- tl+azlll Dy,
+f / o (Dlz+d1(D11_l1))
fu(Du)dDuflz(D )dDu

c-1,
[ s n W (DD,

d
f12(D12)

+/C ll‘/ C l fll(Dll)lelflz(Dlg)dDw

}

For the uncensored demand case in period 2, we
have:

E% (C, lp l (C) Dgla -Dgg)

r E'(D21 ) +r2E(D22)

where D;, and D, are given by

. L(e) o
E(D:»l) =f0 Dy - fn (021)d021 +/l;( )lz {e) < fa (021)dD21

244

. () C—Dy .
E(Dn) = fo /0 Dot (Dzz )anfn (Dm )dDZI
Ge) poo
+ / / (- Dy, )fzz (Dzz )an
0 C-Dy
Ja1 (D21 )dD

(c— 17(0)+dzlz(6) Dy)

/-c 5(c) f
lz(C)

(D22+d2(021 ~l (C)))le (D21)
dDy, fp0 22)dD

Cc— lz (c)
+ f _/ o-ii(o) +d212(c) Dy

(C l (c))fn( ) 21
f22 (022 )dDZZ

+‘/‘:_l;(c)/,‘);)(c_l;(c))fz1 (D21)dD21
f22( ) 22°

For the censored demand case, ER,(c I, I,

(e 1,), D}y, D},) is expressed as
ER, (61,15 (c,1,), Dy, D) =1 B Dy, ) +7, X D;y)
where D, and Dj, are given by

Dy, =min {Dy}, (e 1,)}
min {c— b21,D22} it Dy <L(el)
D}, =min {c=1(c, 1,), Dy +dy(Dy — (e 1)}
if Dy > (e 1)

b21 =D, +w(D11 _l1)+;

e=(C-1,— D, —d (D, —1,)*)*

Therefore, the expected sales from the low-
fare class in period 2 is given by

~ l'z(C l,)
E(D21) = /
0

+ 1/, lz'le(Dzl)dDm,
Iq(cvll)

17 fn (D21)dD21

and the expected sales from the high-fare
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class in period 2 is
22f22 D22}

l-;{cl
aby= [ [
dD22f21(D2l)db2l
[XEXN
f _/ e~ Dy, foz(Dzz)
o 1)11
dDzzfm(D‘zl)dDm

(e~ Glek) + ddled) = D)

+fc*lz(c.,ll)‘/‘ &
0 7

(bgz_:_d)( l (Gl )))f21 (bgl)

dszf2°( ) D22

cfl; (e,y) o
+f0 /@:—z;wl)+d,l;(c,e,)—bﬂ)

dy
(e=1y(e, 1,)fpy (Do )dDyy foy (D ),

oS e e ()
db21f22 (522 )d522'

Now we consider the first derivative of the
total expected revenue (2.1) with respect to ¢,.
After considerable algebraic simplification, we
obtain the first derivative of (2.1) with respect
to 1. The first derivative of the expected revenue
from period 1 with respect to I, is:

a(ER (D}))+ ER(D),)
ol

—ry(1=d)(1— F, ()1 - F,(C-1)

c-1 C-1l,+dl, — D
~n-a) [ ‘1~Fn{(_1__dg}},
1

le(DH)lez

= (’"1 ~d1r2)(1~F11 (ll)) 22)

and first derivative of the total expected rev-
enue from period 2 is expressed as

f fERzC’lvl(c) 21> J

fll (Dll>d‘D11f12(D}2) 12

f / E}?qul,l(qi) 21’ ]

fll (Dll)dD 1f12 ([)12)d‘D

(2.3)

= “""1“’/00/1 fu(Du)anflz(Dn)lez

e )
/ [1‘ 22‘3 w(Dn 1) _-D21)+]

) fo(Dy)dDy,
/ 1= Fp(C)) [0 D) d Dy

ol S

- /} (1= Fy (e, 1)) (D) d Dy,

F (DD 1, (D,)dD,,

Dy, —d (D~ 1)),

b=1—d,—w,

¢ =(C—1,—Dy—d (D, —1,)"
—w(dy; 1)~ e L)),

(c— L =Dy —d, (Dll -21)4“ ”“’(Dn =1 A
= =l (e 1) +dyly (e 1)~ Dy)"
dy

where c=(C-1,—

The first derivative of the total expected profit
from both periods is {2.2) plus (2.3). From (2.3),
we know that the first derivative on I, is always
negative for any parameters and demands, which
means the slope of the expected revenue func-
tion on /, is negative. Considering the two-peri-
od model with the same parameters of the one-
period model, the optimal booking limit is al-
ways less than that of the one-period model be-
cause the first derivative of the second period
expected revenue with respect to [, is always
negative. As [, increases, fewer customers will
wait for reopening low fare in period 2. There—
fore, the expected revenue function of the sec-
ond period is monotonically decreasing as [
increases. Next propositions present the con-
ditions that segmentation of seat inventory for

different fare classes is not guaranteed.

Proposition 2.1

K or —dry,—wr, <Oor Do dl? then the opti-

e gy Y
ry 1
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mal booking limit in period 1 for the two-period

model is 0.

Proof : From (2.2) and (2.3), we have the first
derivative as

a‘E‘i?’l'oml (ll ) —

al,
(r,—dyr,—rw)1—-F, (1))

i [ o [l

f12 (D12 )le2

S/ - Fyle—ulD, )" - D)
f21(DZI)dD2l

il . + [ 50 By (@)1 (D)0
+/a (l_ﬂl(lz(c’ 11)))f22( 22) 22
fll(Dll)lelfIZ(DIZ)le2

aEVIlI'otal (ll )

al, <0 for all

If r, —dr,—wr, <0, then

C and 1,. Hence, £, =0. li

From (2.2), for the single-period model, if
r,—d,r, <0, then [ =0 : Product segmentation
of seat inventory for different fare classes is not
warranted unless the fraction willing to upgrade
from low fare to high fare is greater than the
ratio of unit revenues (saver versus full) in a
single-period model. From proposition 3.1, if we
consider both waiting and buying—up, the con—
dition that makes the optimal booking limit in
period 1 for the two—period model zero will be
tighter compared to the case of the single-period
with the same parameters.

Proposition 2.2
For a fixed C, the corresponding optimal f =0

if and only if
r,(1=d)Pd, Dy, + Dy < O) <1y —r, +1w (2.4)
Proof : see Appendix A. I

From proposition 2.2 we derive an important
analytic insight. We rewrite (2.4) as :

T2Hd1011 +D, > C)+Tzd1P(d1D11 +D, < C)
=7, —rw (2.5)

This formula (2.5) implies that there exists a
G such that ;; =0 if ¢< G and §; >0 if C>G,.
We have an expected marginal interpretation
from (2.5). The right hand side of (2.5) is the
marginal revenue when !, increasing from 0 to
1 (we gain r, but also lose wr;). The left hand
side of (2.5) is the expected marginal revenue
lost when the total high fare demand is bigger
than ¢ or when the total high fare demand is
less than ¢ Note that (25) is more general than
the EMSR heuristic algorithm (Belobaba, 1989),
Pfeifer’s (1989) rule, and the decision rule by
Belobaba and Weatherford (1996).

3.3 Computational Study for the Two-Period
Model

Let C = 35 and r, =1. We assume that the
fraction of buying-up in each period has the
same value : d, =d, =s. Basically, assume that
s=0.3 and w=0.3. The demand is assumed to
follow a normal distribution with a mean of 10
and a standard deviation of 3 for each fare class
in each period. <Figure 1> and <Figure 2> pre-
sent the expected revenue curves as a function
of the fraction of buying-up s at a given fraction



of waiting w = 0.3 for the cases of r, =15 and
r, =2.0. In both cases, increasing s will change
the optimal booking in period 1, significantly and
it will also change the optimal expected revenue
significantly. As the fare ratio (full vs. saver)
increases, the optimal booking limit decreases.
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418 4y
1357911131517192123252729
Booking limit in period 1

{Figure 1> Total expected revenue as a function
of the booking limit in period 1 with
different combinations of s and w
where the full fare is 1.5
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1357 8t 131517192123252729
Booking limit in period 1

{Figure 2> Total expected revenue as a function
of the booking limit in period 1 with
different combinations of s and w
where the full fare is 2.0

Continuing the above numerical example un-
der the same parameter settings for demand
distributions, <Figure 3> display the optimal
booking limits in period 1 and the expected rev-
enues as a function of the initial capacity where
the full fare is 1.5. As the capacity increases,
the optimal booking limit and its expected rev-
enue change significantly.
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Total expected profit
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=

w W
>
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1.3 8 7 9 11 131517192123252729
Booking limit in period 1

{Figure 3> Total expected revenue as a function
of period 1 booking limit with - different
capacities where the full fare is 1.5

Next we consider the case where the fraction
of buying-up s is 0.1, the saver fare is 1.0 and
the full fare is 2.0. <Figure 4> displays optimal
booking limits and expected revenues as a func-
tion of the fraction of waiting. As the fraction
of waiting increases from 0.1 to 0.5, the optimal
booking limit in period 1 decreases from 9 to 2.
For the case where the fraction willing to wait
is 0.1, <Figure 5> displays the optimal booking
Hmits and the expected revenue as a function
of the fraction of buying-up. When the fraction
of buy-up is 04, the optimal booking limit in pe-
riod 1 is zero. <Figure 4> and <Figure 5> il-
lustrate that optimal booking limits decrease
significantly in the presence of customer di-

version and strategic customer behavior. Note

533
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k- e W 0.3
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3 59 R
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515 |ormrrr - e

1 3 5 7 9 11 131517192123252729
Booking fimit in period 1

{Figure 4> Total expected revenue as a function
of period 1 booking limit where the frac-
tion of waiting changes from 0.1 to 0.5
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that the booking limit calculated by the EMSR
is 15 if no strategic customer behavior is
assumed.

h\l"\\"k 0]
W E:_‘“s:oz}
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Booking limit in period 1
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Total expected profit
b
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o
AR <1

{Figure 5) Total expecied revenue as a function
of period 1 booking limit where the
fraction of buying-up changes from 0.1
004

Compared with results using EMSR type ap-
proach, all the figures illustrate that the optimal
booking limits decrease significantly in the pre-
sence of customer diversion and strategic cus—
tomer behavior. <Table 1> compares the total
expected revenues when EMSR type decision
rule including customer diversion effect is used
{waiting could not be considered when EMSR
type decision rule is used) with those when our
algorithm is used. If strategic customer behavior

{Table 1> Total Expected Revenue Using EMSR
Rule vs, the Optimal Booking Limit

o™ 156" it dioarson| Opmal | Gain(®o
0 | 10 20 | 5% | 171
0 | 10 a1 | 5376 | 282
0 | 10 27 | 56 | 4%
0 | 10 B% | 5106 | 756
0 | 10 205 | 5292 | 17
0 | » | e | %% | 17
0 | B | e | 2® | 1
0] 5208 | 5306 | 198

and diversion are not considered, the booking
limit in period 1 will be 15 and the booking limit
in period 2 is 25 by the EMSR. As shown in
the table, ignoring strategic customer behavior
may result in 8% revenue loss.

4. Conclusion

Seat inventory allocation has been a major re-
search area in airline revenue management.
Customer diversion for one-period models has
been investigated by many researchers. Finding
optimal booking limits for multi-period revenue
management models has proven to be difficult
and many of the multi~period models in the lit-
erature are heuristic in nature. In this research,
we develop a two-period model for airline seat
allocations considering waiting (as strategic cu-
stomer behavior) and customer diversion effe-
cts. As the assumptions become more realistic,
the sclutions become less tractable. If we con-
sider customer diversion or strategic customer
behavior, then the optimal solutions are totally
different from solutions using EMSR type me-
thods, and revenue losses may exceed 8% under
certain circumstances. The main contribution of
this research is to extend previous research fo
allow customers to behave strategically by
waiting to see whether a cheaper product will
become available in the next period, and solve
one-dimensional problems for finding optimal
booking limits for a two-period model. The ap-
plication of this method to the case of multi-pe-
riod problems having three or more periods re-
quires more complex mathematical derivations,
although dynamic program may offer a feasible
alternative when developing optimal algorithms
for these multi-period models.
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=3

(Appendix A)

The first derivative of the total expected revenue of the two-period problem with respect to {, is :

aER’I”atol (ll) - (

i, r—dyry))(1— £, () —r, (1=d))(1= F, (1)1~ F (C-1,)

-4 [ GC"‘{I-EI{M%“—”—@]}fmww)ww

_rzwfo /I fu(Du)anfxz(sz)dDu

Bleh)
[0 (1—Fyy(e—w(D,; —1,)" = Dy, )fy, (D, )dDy,
© 0 ¢ —
“Tzéfo /1, +f0 (1= F; (), (D, )dDy, Fu (D )dDy, f12(Dy,)dD,

+fﬂm(1"1721 (l;(C’ll)))fzz(Dzz)dD%

Where cE(C_ll"Dm—dl(D11_ll)+)+, éE(C_ll_Dn—dl(Dn_l1)+_w(D11_l1)+—l;(c’ ll))+

(C—ll ~Dj,—d, (Du =1 ) _W(Du _l1)+ —l;(c, ll)+d‘2£;(c’ ll)_D22)
d,

+

T=

and d=1-d —w.

aE‘RI’atol (ll )

We rewrite i,

in a marginal expression as :

7’2(1"‘1'1)P(d1(911‘l1)+012 <C-b, Dy >y
—(1'2--~r1+7‘,w)P(D11 >l1)

‘P(Dzz >C—w(Du —ll)wL — Dy, Dy <l;(‘3’ L) D, > )}
—ry8

+P(D,, >C D, <¢, D, >, (AD

+P(D,, >h{c 1), Dy > ¢, Dy, >,

We show that if sER.(1,)/al, <0 at I, =0, then 2ER.(,)/al, <0 for all i, >0 for a given C. The first
derivative of ER,(l,) at I, =0 is given by

ry(1=d) ) Pldy Dy + Dy, < O) = (ry '5'1 +rw) =y 0P(G ¢ Dy, Dyys Dy Dy, 0, (e 0)

P(Dy, >c—wD,, - D,,, D, <l;(c, 0))
where P(C ¢ Dy, Dy, Dy, Dy, 0, (e, 0) ={+P(D,, > C D,, <¢)
+P(Dy, >4 (c 0),Dy, >¢)

¢ =(C-Dy—d D —wD, —1(c 0)", c=(C-D,-d,D,)*

(c+dy(c 0—D,,)"

¢ 4

it

,and é=s1—-d ~w
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It

1"2(1—0i1)P(cl1D11 +D, < o—- (r2 - +r1w) <0 (A2)

then it is also true that
ry(L—d, ) P(d, Dy, + Dy < O) = (ry =y +1,w) —16P(C ¢, Dy}, Dyys Dy, Dy, 0, 1y, 0)) <0

Therefore, substituting (A2) into (Al) leads to

ﬂ%‘l"’ﬂs ry(1—d)P(D,, ~1,)+ Dy, < C—1,,D;, >1,)
—r,(1—d)Pld,D,, + D, < OPD,, >1,)
—r26P(C,' & Dy, Dygy Dy, Doy, s l (e L )
<r,(1—d)Pd,D,, + Dy < C—1, +d,1, ) PD,, >1,)
—7,(1=d)Pd,D,, +D,, <OPD,, >1,
—1y0P(C ¢, Dyy, Dyg, Dy, Dy, 1y, byl 1y

<0.

)
)
It can be easily shown that for two independent random variables A and B, if Pr{B > b}>0, then
Pr {A+B < alB > b} < Pr{A+B < a} for all a. Hence,
r,(1=d,)P(d, (D}, —1,) + Dy, < C—1,, Dy >1)
=r,(1=d)P\d,D;, + Dy < C—1, +djl,| D, >1,,D;, >1,)

<r,(1—d))P(d, D}, + D, < C—1, +d )1, )P(D;, >1,)

From the above, for a given C, if (A2) holds, then 8ER,.(1,)/8l, <0 at I, =0, and 2ER.(I,)/al, <0 for
all i, >0. Therefore, a sufficient condition is

T, (l—all)P(dlD11 +D, < )< Ty =7 W,

for the optimal booking limit in period 1 being 0. This completes the proof. H



