P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer

  • 장성규 (단국대학교 전자전기공학과) ;
  • 공수철 (단국대학교 전자전기공학과) ;
  • 장호정 (단국대학교 전자전기공학과)
  • Jang, Seong-Kyu (Department of Electronics & Electrical Engineering, Dankook University) ;
  • Gong, Su-Cheol (Department of Electronics & Electrical Engineering, Dankook University) ;
  • Chang, Ho-Jung (Department of Electronics & Electrical Engineering, Dankook University)
  • 투고 : 2010.06.18
  • 심사 : 2010.06.25
  • 발행 : 2010.06.30

초록

본 연구에서는 P3HT와 PCBM 물질을 전자도너와 억셉터 광활성층 물질로 사용하여 벌크이종접합 구조를 갖는 Glass/ITO/PEDOT:PSS/P3HT-PCBM/Al 구조의 유기박막태양전지를 제작하였다. P3HT와 PCBM은 각각 0.5 wt%의 농도로 톨루엔 용액에 용해하였다. 광활성층 농도를 최적화하기 위하여 P3HT:PCBM= 3:4, 4:4, 4:3 wt%의 농도비로 소자를 제작하고, 농도비에 따른 전기적 특성을 조사하였다. 또한 활성층의 후속열처리 온도가 소자의 전기적 특성에 미치는 영향을 조사하였다. P3HT와 PCBM의 농도비가 4:4 wt%의 비율에서 가장 우수한 전기적 특성을 나타내었으며, 이때 단락전류밀도 ($J_{SC}$), 개방전압 ($V_{OC}$), 및 충실인자 (FF)는 4.7 $mA/cm^2$, 0.48 V 및 43.1%를 각각 나타내었다. 또한 전력변환효율(PCE)은 0.97%의 값을 얻었다. 최적화된 농도비를 갖는 태양전지 소자에 대해 $150^{\circ}C$에서 5분, 10분, 15분, 20분간 후속 열처리를 실시한 결과 P3HT 전자도너의 흡광계수가 증가하는 경향을 보였다. 후속 열처리 조건이 $150^{\circ}C$에서 15분인 경우 전기적 특성이 열처리 하지 않은 소자에 비해 특성이 개선되었다. 즉, 이때의 전기적 특성은 $J_{SC},\;V_{OC}$, FF, PCE의 값이 각각 7.8 $mA/cm^2$, 0.55 V, 47%, 2.0%를 나타내었다.

The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

키워드

참고문헌

  1. J. Y. Lee, W. K. Han and J. H. Lee, "Electrochemical Etching of Silicon in Porous Silicon Layer Transfer Process for Thin Film Solar Cell Fabrication", J. Microelectron. Packag. Soc., 16(4), 55 (2009).
  2. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.Q. Nguyen, M. Dante and A. J. Heeger, "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing", Science, 317(5835), 222 (2007). https://doi.org/10.1126/science.1141711
  3. A. Wang, J. Zhao and A.A. Green, "24% efficient silicon solar cells", Appl. Phys. Lett, 57, 602 (1990). https://doi.org/10.1063/1.103610
  4. J. F. Geisz, D. J. Friedman, J.S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman and K. M. Jones, "40.8% efficient inverted triplejunction solar cell with two independently metamorphic junctions", Appl. Phys. Lett., 93, 123505 (2008). https://doi.org/10.1063/1.2988497
  5. M. Drees, R. M. Davis and J. R. Heflin, "Improved morphology of polymer-fullerene photovoltaic devices with thermally induced concentration gradients", J. Appl. Phys, 97, 036103 (2005). https://doi.org/10.1063/1.1845574
  6. H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch, M. Chu. L. Steiner and N. S. Sariciftci, "Efficiency limiting morphological factors of MDMO-PPV: PCBM plastic solar cells", Thin Solid Films, 511-512, 587 (2006) https://doi.org/10.1016/j.tsf.2005.12.071
  7. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers", Nature, 401(6754), 685 (1999). https://doi.org/10.1038/44359
  8. G. Wang, J. Swensen, D. Moses and A. J. Heeger, "Increased mobility from regioregular poly(3-hexylthiophene) fieldeffect transistors", J. of Appl. Phys, 93, 6137 (2003). https://doi.org/10.1063/1.1568526
  9. R. Cugola, U. Giovanella, P. D. Gianvincenzo, F. Bertini, M. Catellani and S. Luzzati, "Thermal characterization and annealing effects of polythiophene/fullerene photoactive layers for solar cells", Thin Solid Films, 511-512, 489 (2006). https://doi.org/10.1016/j.tsf.2005.12.092
  10. Y. Zhang, G. Hukic-Markosian, D. Mascaro and Z. V. Vardeny, "Enhanced performance of P3HT/PCBM bulk heterojunction photovoltaic devices by adding spin $\frac{1}{2}$ radicals" , Synthetic Metals, 160(3-4), 262 (2010). https://doi.org/10.1016/j.synthmet.2009.10.005
  11. S. H. Jin, B. V. Kumar Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee and Y. S. Gal, "Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system", Solar Energy Materials & Solar Cells, 91(13), 1187 (2007). https://doi.org/10.1016/j.solmat.2007.04.001
  12. I. S. Yoo, M. J. Lee, C. H. Lee, D. W. Kim, I. S. Moon and D. H. Hwang, "The effect of a buffer layer on the photovoltaic properties of solar cells with P3OT:fullerene composites", Synthetic Metals, 153(1-3), 97 (2005). https://doi.org/10.1016/j.synthmet.2005.07.182
  13. F. C. Krebs, "Processing and preparation of polymer and organic solar cells", Solar Energy Materials & Solar Cells, 93(4), 394 (2009). https://doi.org/10.1016/j.solmat.2008.10.004
  14. S. B. Shin, S. C. Gong, H. H. Park, H. Jeon and H. J. Chang, "Preparation and Characterization of White Polymer Light Emitting Diodes Using PFO:MEH-PPV", J. Microelectron. Packag. Soc., 15(4), 59 (2008).