DOI QR코드

DOI QR Code

코핑 디자인과 시멘트에 따른 지르코니아 도재관의 파절 저항성

Fracture resistance and marginal fidelity of zirconia crown according to the coping design and the cement type

  • 심헌보 (원광대학교 치과대학 보철학교실) ;
  • 김유진 (원광대학교 치과대학 보철학교실) ;
  • 김민정 (원광대학교 치과대학 보철학교실) ;
  • 신미란 (한림대학교 임상치의학대학원 임플란트 보철과) ;
  • 오상천 (원광대학교 치과대학 보철학교실)
  • Sim, Hun-Bo (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Yu-Jin (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Min-Jeong (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Shin, Mee-Ran (Implant Prosthodontics, Graduate School of Clinical Dentistry, Hallym University) ;
  • Oh, Sang-Chun (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 투고 : 2010.06.09
  • 심사 : 2010.06.29
  • 발행 : 2010.07.30

초록

연구 목적: 본 연구는 지르코니아 코핑의 다양한 디자인과 시멘트 종류에 따른 지르코니아 도재관의 파절 저항성과 변연 적합도를 평가하고자 하였다. 연구 재료 및 방법: CAD/CAM system (Everest, KAVO Dental GmbH, Biberach, Germany)을 이용하여, 다양한 두께를 가진 지르코니아 코핑을 디자인하고 제작하였다. 80개의 코핑을 디자인에 따라 20개씩 4개의 그룹으로 분류하였으며, 각 그룹은 다시 시멘트 종류에 따라 시편을 10개씩 나누어 2개의 소그룹으로 분류하였다. Group I은 전체적으로 균일하게 0.3 mm로, group II는 협면과 협측 교합면은 0.3 mm, 설면과 설측 교합면을 0.6 mm, group III은전체0.6 mm 균일하게, Group IV는 협면과 협측 교합면은 0.6 mm 설면과 설측 교합면을 1.0 mm로 디자인 하였다. Putty index를 이용해 같은 크기와 형태의 지르코니아 도재관을 축성 후, 완성하였다. 미세 경도측정기의 현미경 (Matsuzawa, MXT-70, Japan)으로 도재관의 변연 적합도를 측정하였고, 만능시험기 (Z020, Zwick, Germany)를 이용하여 cross-head speed를 1 mm/min로 도재관이 파절될 때까지 수직 하중을 가해 파절 저항성을 측정하였다. One-way ANOVA와 two-way ANOVA 를 이용해 그 결과를 비교 분석 하였으며, 사후 검정으로 Duncan's multiple range test ($\alpha$=0.05)를 사용하였다. 결과:1. 코핑 디자인에 따른 변연적합성은 유의한 차이가 있었다 (P<.05). 2. 임시합착제 (Cavitec$^{(R)}$)로 합착한 군에서 코핑 디자인에 따른 지르코니아 도재관의 파절강도는 유의한 차이가 있었다 (P<.05). 3. 영구접착제 (Panavia-$F^{(R)}$)로 접착한 군에서 코핑 디자인에 따른 지르코니아 도재관의 파절강도는 통계학적인 유의차가 없었다 (P>.05). 4. 시멘트의 종류에 따른 동일한 디자인사이에서의 파절강도는 group I과 group II에서 Panavia-F 접착군이 Cavitec$^{(R)}$ 접착군보다 통계학적으로 유의성 있게 높았다 (P<.05). 5. 도재관의 파절 양상은 지르코니아 코핑의 디자인에 따른 차이는 없었으며, 시멘트의 종류에 따라 Cavitec$^{(R)}$ 접착군에서는 시편이 완전 분리되는 전부 파절, Panavia-$F^{(R)}$ 접착군에서는 전장 도재층에서만 파절되는 부분파절이 주로 나타났다. 결론: 제한된 결과이기는 하나 심미성을 위해 가시면을 얇게 하고 강도를 위해 비가시면의 지르코니아 코핑을 두껍게 하는, 즉 기능에 따라 두께를 달리 하는 세라믹 하부구조 디자인이 임상에서 선택적으로 활용될 수 있을 것으로 사료되었다.

Purpose: The purpose was to compare the marginal fidelity and the fracture resistance of the zirconia crowns according to the various coping designs with different thicknesses and cement types. Materials and methods: Zirconia copings were designed and fabricated with various thicknesses using the CAD/CAM system (Everest, KaVo Dental GmbH, Biberach., Germany). Eighty zirconia copings were divided into 4 groups (Group I: even 0.3 mm thickness, Group II: 0.3 mm thickness on the buccal surface and the buccal half of occlusal surface and the 0.6 mm thickness on the lingual surface and the lingual half of occlusal surface, Group III: even 0.6 mm thickness, Group IV: 0.6 mm thickness on the buccal surface and the buccal half of occlusal surface and the 1.0 mm thickness on the lingual surface and the lingual half of occlusal surface) of 20. By using a putty index, zirconia crowns with the same size and contour were fabricated. Each group was divided into two subgroups by type of cement: Cavitec$^{(R)}$ (Kerr Co, USA) and Panavia-$F^{(R)}$ (Kuraray Medical Inc, Japan). After the cementation of the crowns with a static load compressor, the marginal fidelity of the zirconia crowns were measured at margins on the buccal, lingual, mesial and distal surfaces, using a microscope of microhardness tester (Matsuzawa, MXT-70, Japan, ${\times}100$). The fracture resistance of each crown was measured using a universal testing machine (Z020, Zwick, Germany) at a crosshead speed of 1 mm/min. The results were analyzed statistically by the two-way ANOVA and oneway ANOVA and Duncan's multiple range test at $\alpha$=.05. Results: Group I and III showed the smallest marginal fidelity, while group II demonstrated the largest value in Cavitec$^{(R)}$ subgroup (P<.05). For fracture resistance, group III and IV were significantly higher than group I and II in Cavitec$^{(R)}$ subgroup (P<.05). The fracture resistances of Panavia-$F^{(R)}$ subgroup were not significantly different among the groups (P>.05). Panavia-$F^{(R)}$ subgroup showed significantly higher fracture resistance than Cavitec$^{(R)}$ subgroup in group I and II (P<.05). Conclusion: Within the limitation of this study, considering fracture resistance or marginal fidelity and esthetics, a functional ceramic substructure design of the coping with slim visible surface can be used for esthetic purposes, or a thick invisible surface to support the veneering ceramic can be used depending on the priority.

키워드

참고문헌

  1. Filser F, Kocher P, Weibel F, Lu ¨thy H, Scha ¨rer P, Gauckler LJ. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent 2001;4:89-106.
  2. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  3. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74.
  4. Jeong HC. Fracture strength of zirconia monolithic crowns. J Korean Acad Prosthodont 2006;44:157-64.
  5. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8. https://doi.org/10.1177/00220345950740060301
  6. Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003;82:238-42. https://doi.org/10.1177/154405910308200317
  7. Kupiec KA, Wuertz KM, Barkmeier WW, Wilwerding TM. Evaluation of porcelain surface treatments and agents for composite to-porcelain repair. J Prosthet Dent 1996;76:119-24. https://doi.org/10.1016/S0022-3913(96)90294-2
  8. Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 2008;27:99-104. https://doi.org/10.4012/dmj.27.99
  9. Baek KH, Woo YH, Kwon KR, Kim HS. Spectrophotometric analysis of the influence to shade of zirconia core on the color of ceramic. J Korean Acad Prosthodont 2008;46:409-19.
  10. Shin MR, Kim MJ, Oh SC. Fracture load and marginal fitness of zirconia ceramic coping by design and coloration. J Korean Acad Prothodont 2009;47:406-15. https://doi.org/10.4047/jkap.2009.47.4.406
  11. Besimo C, Jeger C, Guggenheim R. Marginal adaptation of titanium frameworks produced by CAD/CAM techniques. Int J Prosthodont 1997;10:541-6.
  12. May KB, Russell MM, Razzoog ME, Lang BR. Precision of fit: the Procera AllCeram crown. J Prosthet Dent 1998;80:394-404. https://doi.org/10.1016/S0022-3913(98)70002-2
  13. Kim DK, Cho IH, Lim JH, Lim HS. On the marginal fidelity of allceramic core using CAD/CAM system. J Korean Acad Prosthodont 2003;41:20-34.
  14. Nakamura T, Dei N, Kojima T, Wakabayashi K. Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crowns. Int J Prosthodont 2003;16:244-8.
  15. Grossman DG, Nelson JW. The bonded Dicor crown. IADR abstract no 800, J Dent Res 1987;66:206.
  16. Hobo S, Shillingburg HT Jr. Porcelain-fused to metal: tooth preparation and coping design. J Prosthet Dent 1973;30:28-36. https://doi.org/10.1016/0022-3913(73)90075-9
  17. Miller LL. Framework design in ceramo-metal restorations. Dent Clin North Am 1977;21:699-716.
  18. Groten M, Pr¨obster L. The influence of different cementation modes on the fracture resistance of feldspathic ceramic crowns. Int J Prosthodont 1997;10:169-77.
  19. Eden GT, Kacicz JM. Dicor crown strength improvement due to bonding. IADR abstract no 801, J Dent Res 1987;66:207.
  20. Jung WY, Oh SC, Dong JK. A study on the microleakage of the ips empress ceramic crown according to margin types and resin cement. J Korean Acad Prosthodont 1998;36:789-804.
  21. Kern M, Thompson VP. Bonding to glass infiltrated alumina ceramic: adhesive methods and their durability. J Prosthet Dent 1995;73:240-9. https://doi.org/10.1016/S0022-3913(05)80200-8
  22. Yoon JT, Lee SH, Yang JH. The influence of surface treatments on the shear bond strength of resin cements to In-ceram core. J Korean Acad Prosthodont 2000;38:129-46.
  23. Lim JH. Marginal fidelity and fracture strength of In-ceram crowns according to various resin cements. J Korean Acad Prosthodont 1998;36:888-99.
  24. Strub JR, Beschnidt SM. Fracture strength of 5 different all-ceramic crown systems. Int J Prosthodont 1998;11:602-9.
  25. Castellani D, Baccetti T, Giovannoni A, Bernardini UD. Resistance to fracture of metal ceramic and all-ceramic crowns. Int J Prosthodont 1994;7:149-54.

피인용 문헌

  1. Influence of fracture strength of zirconia ceramic restoration on thickness of veneer porcelain vol.42, pp.2, 2015, https://doi.org/10.14815/kjdm.2015.42.2.149