DOI QR코드

DOI QR Code

경사형 내부연결 임플란트 시스템 (SS $III^{(R)}$)에서 지대주 형태에 따른 응력분포의 3차원 유한요소 분석

A 3-dimensional finite element analysis of tapered internal connection implant system (Avana SS $III^{(R)}$) on different abutment connections

  • 이혜승 (이화여자대학교 임상치의학대학원 임플란트치의학과) ;
  • 김명래 (이화여자대학교 임상치의학대학원 임플란트치의학과) ;
  • 박지만 (이화여자대학교 임상치의학대학원 심미수복치의학과) ;
  • 김선종 (이화여자대학교 임상치의학대학원 임플란트치의학과)
  • Lee, Hye-Sung (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Kim, Myung-Rae (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Park, Ji-Man (Department of Esthetic Restorative Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Kim, Sun-Jong (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University)
  • 투고 : 2010.02.03
  • 심사 : 2010.03.31
  • 발행 : 2010.07.30

초록

연구 목적: 내부연결형 임플란트 고정체에 연결 방식이 다른 4종류의 지대주를 연결하여 교합력을 가하였을 때 각 구조에 발생하는 응력의 차이를 비교하고, 이들 연결방식이 임플란트 주위조직의 응력분포에 미치는 영향을 3차원 유한요소법을 통하여 알아보고, 지대주의 선택 기준을 마련하고자 하였다. 연구 재료 및 방법: 고정체로는 직경 4 mm, 길이 11.5 mm의 SS-$III^{(R)}$ (Osstem, Korea)를 사용하였으며, 사용된 지대주는 각각, 모델 1에서 Solid abutment, 모델 2에서 Com-Octa abutment, 모델 3에서 ComOcta Gold abutment, 모델 4에서 Octa abutment를 사용하였고, 네 가지 하중조건으로 치관중심와 (central fossa)에 fixture 장축에 평행하게 점하중으로100N의 수직하중, 협측교두에 대하여 fixture 장축에 평행하게 점하중으로 100N 수직하중, 치관중심와에서 설측으로 100N의 $30^{\circ}$ 경사하중, 협측교두 (buccal cusp)에 치아의 바깥쪽에서 내측으로 100N의 $30^{\circ}$ 경사하중을 주었고 3G.Author (Plasso Tech, USA)를 이용하여 분석하였다. 결과: 1. 골조직에서는 모든 모델에서 하중조건에 관계없이 가장 큰 응력이 고정체 상부에 집중되었고, 고정체 하부에서는 근단 부위에서 응력 집중을 보였으며, 그 외의 부위에서는 큰 응력 집중은 보이지 않았다. 2. 고정체에서의 응력은 모든 모델에서 하중조건에 관계없이 neck 부위에서 최대의 양상을 보였다. 3. 응력은 골에서보다 임플란트 내부에서 훨씬 높았다. 4. 중심와에 수직하중인 하중조건 1에서 가장 낮은 응력이 관찰되었으며, 이 때의 응력집중 현상도 가장 적게 나타났다. 서로 다른 지대주에서 응력분포 양상을 살펴본 결과, 같은 고정체를 사용한 경우에 지대주의 연결 형태에 따른 골조직에서의 응력 분포의 차이는 없었다.

Purpose: The purpose of this study was to compare the stress distribution characteristics of four different abutment connections on SS-$III^{(R)}$ fixture under occlusal loading, using 3-dimensional finite element method. Materials and methods: The fixture of SS-$III^{(R)}$ (Osstem, Korea) with 4 mm diameter and 11.5 mm length and 4 types of abutments were analyzed; Solid, Com-Octa, ComOcta Gold, and Octa abutment. The models were placed in the area of first molar in the mandible. The 4 loading conditions were; (1) the vertical loading of 100 N on the central fossa, (2) the vertical loading of 100 N on the buccal cusp, (3) the $30^{\circ}$ inclined loading of 100 N to lingual side on the central fossa, and (4) the $30^{\circ}$ inclined loading of 100 N to the lingual side on the buccal cusp. The 3G.Author program was used, the von-Mises stress was calculated and the stress contours were plotted on each part of the implant systems and the surrounding bone structures. Results: Regardless of abutment types and loading conditions, higher stress concentration was observed at the cortical bone. In cancellous bone, the highest stress was observed at apical portion and the maximum stress occurred at the implant neck. The higher internal stress was observed in the fixtures than in the bone. The lowest stress was observed at loading condition 1 and the stress concentration was also lower than any other loading conditions. Conclusion: Within the limitation of the result of this study, it seems that the abutment connection type does not affect much on the stress distribution of bone structure.

키워드

참고문헌

  1. Branemark PI, Zarb GA, Albrektsson T, Rosen H. Tissue-integrated prostheses. Osseointegration in clinical dentistry. Plast Reconstr Surg 1986;77:496-7. https://doi.org/10.1097/00006534-198603000-00037
  2. Han SU, Park HO, Yang HS. Stress analysis of supporting tissues and implants according to implant fixture shapes and implant-abutment connections. J Korean Acad Prosthodont 2004;42:226-37.
  3. Park WH, Lee YS. Three dimensional finite element stress analysis of implant prosthesis according to the different fixture locations and angulations. J Korean Acad Prosthodont 2005;43:61-77.
  4. Lee JM, Kim YS, Kim CH, Kim YH. 3-D FEA of three different single tooth abutments : Cement-retained vs Screw-retained. J Korean Acad Prosthodont 1999;37:269-88.
  5. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002;88:604-10. https://doi.org/10.1067/mpr.2002.129384
  6. Naert IE, Duyck JA, Hosny MM, van Steenberghe D. Freestanding and tooth-implant connected prostheses in the treatment of partially edentulous patients. Part 1: An up to 15-years clinical evaluation. Clin Oral Implants Res 2001;12:237-44. https://doi.org/10.1034/j.1600-0501.2001.012003237.x
  7. Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34.
  8. Shin HS, Chun HJ, Han CH, Lee SH. Three-dimensional stress analysis of implant systems in the mandibular bone with various abutment types and loading conditions. J Korean Acad Prosthodont 2003;41:617-25.
  9. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res 1997;8:290-8. https://doi.org/10.1034/j.1600-0501.1997.080407.x
  10. Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66. https://doi.org/10.1016/S0022-3913(99)70243-X
  11. Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res 2000;11:458-64. https://doi.org/10.1034/j.1600-0501.2000.011005458.x
  12. Ahn JK, Kay KS, Chung CH. Finite element stress analysis of implant prosthesis with internal connection between the implant and the abutment. J Korean Acad Prosthodont 2004;42:356-72.
  13. Sutter F, Schroeder A, Buser DA. The new concept of ITI hollowcylinder and hollow-screw implants: Part 1. Engineering and design. Int J Oral Maxillofac Implants 1988;3:161-72.
  14. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI Dental Implant System: design and engineering. Int J Periodontics Restorative Dent 1993;13:409-31.
  15. Moon BH, Yang JH. A study on the stress analysis of three root form implants with finite element analysis. J Korean Acad Prosthodont 1993;31:129-50.
  16. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108.
  17. Rangert BR, Sullivan RM, Jemt TM. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants 1997;12:360-70.
  18. Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990;16:6-11.
  19. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: an analysis using statics. Part one: Horizontal loading. J Oral Implantol 1992;18:343-8.
  20. Chung KM, Chung CH, Jeong SM. Finite element stress analysis of implant prosthesis according to platform width of fixture. J Korean Acad Prosthodont 2003;41:674-88.
  21. Andersson B, O¨dman P, Boss A, Jo ¨rne′us L. Mechanical testing of superstructures on the CeraOne abutment in the Branemark system. Int J Oral Maxillofac Implants 1994;9:665-72.
  22. Kwon JH, Choi MH, Kim YL, Cho HW. Three-dimensional finite element stress analysis of single implant restoration using different fixture and abutment screw diameters. J Korean Acad Prosthodont 2005;43:105-19.

피인용 문헌

  1. Finite element analysis on the connection types of abutment and fixture vol.50, pp.2, 2012, https://doi.org/10.4047/jkap.2012.50.2.119