초록
예제 기반 챗봇은 사용자 발화와 가장 유사한 예제 발화를 대화 예제 데이터베이스로부터 검색하여 응답을 생성한다. 가장 유사한 발화를 찾는 것은 응답의 적절성과 직결되는 것임에도 불구하고, 유사 발화 검색을 위해 어떠한 자질을 사용할 것인지, 어떠한 방식이 좋은 지에 대한 기존 연구는 부족하였다. 본 연구에서는 검색의 정확도와 예제의 활용도를 높이기 위해 다양한 어휘적, 의미적 자질을 이용한 기계 학습 방법을 제안한다. 실험 결과 1) 대화 예제 데이터베이스의 활용도 2) 예제 발화의 매칭의 정확률 3) 답변의 질적인 측면에서 제안하는 방법은 기존의 방법에 비해 더 나은 성능을 보였다.
Example-based chatBot generates a response to user's utterance by searching the most similar utterance in a collection of dialogue examples. Though finding an appropriate example is very important as it is closely related to a response quality, few studies have reported regarding what features should be considered and how to use the features for similar utterance searching. In this paper, we propose a machine learning framework which uses various linguistic features. Experimental results show that simultaneously using both semantic features and lexical features significantly improves the performance, compared to conventional approaches, in terms of 1) the utilization of example database, 2) precision of example matching, and 3) the quality of responses.