Abstract
In this paper, we propose a quadratic (nonlinear) regression model that forecasts daily demands of electric power in summer. For cost-effective production (and/or procurement) of electric power, forecasting demands of electric power with accuracy is important, especially in summer when temperature is high. In the literature, temperature and daily demands of preceding days are typically employed to construct forecasting models. While, we consider another factor, day of the week, together with temperature and daily demands of preceding days. For validating the proposed model, we demonstrate the forecasting accuracy in terms of MAPE(Mean Absolute Percentage Error) and MPE(Maximum Percentage Error) using field data from KEPCO(Korea Electric Power Corporation) in comparison with two forecasting models in the literature. When compared with the two benchmarks, the proposed forecasting model performs far better providing MAPE and MPE not exceeding 3.08% and 8.99%, respectively, in summer from 2005 to 2009.
이 논문에서는 여름철 일일 전력수요 총량을 예측하는 회귀모형을 개발한다. 경제적인 전력 생산계획을 수립하기위해 예측 오차율을 낮추는 것은 매우 중요하다. 전력수요가 크게 증가하는 여름철 전력수요를 예측하기위해 기존 연구에서는 외기온도 및 직전일 전력수요를 고려하였으나, 이 논문에서는 기존 연구에서 제시한 예측 오차율을 개선하기 위해 전력수요의 요일별 특성을 추가적으로 고려한 회귀모형을 개발한다. 이 논문에서는 여름철 전력수요의 요일별 패턴은 최고차항의 계수가 음수인 2차 함수 형태를 나타냄을 확인하였다. 즉, 2005년부터 2009년까지 5년간의 여름철 전력수요 패턴을 살펴본 결과 전력수요 총량은 일요일에 가장 낮고 월요일부터 증가하다가 수요일이나 목요일부터 다시 감소하는 패턴을 보인다. 이 논문에서 제안하는 여름철 전력수요 예측 회귀모형의 타당성을 검증하기 위해 2005년부터 2009년까지 실제 전력수요 데이터를 바탕으로 여름철 전력수요 총량을 예측한 결과, 평균 오차율(MAPE: Mean Absolute Percentage Error)과 최대 오차율(MPE: Maximum Percentage Error)이 각각 3.08%와 8.99%를 넘지 않는 수준임을 확인하였다. 또한 기존 연구에서 제시한 방법과 비교하여도 평균 오차율과 최대 오차율 모두 기존 연구에서 제시한 오차율보다 우수함을 확인하였다.