DOI QR코드

DOI QR Code

Morphology-pair를 이용한 심전도 신호의 기저선 변동 잡음 제거 알고리즘

Minimizing Algorithm of Baseline Wander for ECG Signal using Morphology-pair

  • 김성완 (수원과학대학 컴퓨터정보과) ;
  • 김세윤 (경북대학교 전자전기컴퓨터학부) ;
  • 김태훈 (경북대학교 전자전기컴퓨터학부) ;
  • 최병재 (대구대학교 전자공학부) ;
  • 박길흠 (경북대학교 전자전기컴퓨터학부)
  • 투고 : 2010.03.24
  • 심사 : 2010.07.25
  • 발행 : 2010.08.25

초록

심전도 신호 잡음 중 기저선 변동 잡음은 신뢰성 있는 심장 질환 진단을 위해 반드시 제거되어야 하는 것으로서, 이를 위해 본 논문에서는 P, T파 및 QRS-complex를 동시에 배제하여 기저선 변동 잡음만을 추정할 수 있는 Morphology-pair를 제안한다. 즉, P, R, T파와 같은 국부 최대값(local maxima) 특성을 가지는 신호 영역과 Q, S파와 같은 국부 최소값(local minima) 특성을 가지는 신호 영역을 배제할 수 있는 각각의 Morphology 연산을 하나의 Morphology-pair로 정의하고, 이를 이용하여 추정된 기저선 변동 잡음 신호와 원 신호와의 차를 통해 기저선 변동 잡음 제거 신호를 도출한다. 제안한 알고리즘의 유효성을 확인하기 위해 실제 심전도 임상 데이터인 MIT/BIH 데이터베이스를 이용한 실험 결과를 살펴봄으로써 기저선 변동 잡음이 효과적으로 제거됨을 입증한다.

The baseline wander is most fatal noise, because it obstructs reliable diagnosis of cardiac disorder. Thus, in this paper, the morphology-pair is proposed for estimation of baseline wander except P, T-wave and QRS-complex. Proposed Morphology-pair is able to except P, R, T-wave which have characteristics of local maxima. Likewise Q, S-wave such as local minima are excepted by proposed Morphology-pair. The final baseline wander eliminated ECG signal is deducted by subtraction of original ECG and estimated baseline wander. The experimental results based on the MIT/BIH database show that the proposed algorithms produce promising results.

키워드

참고문헌

  1. B. U. Kohler, C. Henning, and R. Orglmeister, "The Principles of Software QRS Detection," IEEE Eng. Medicine and Biology Magazine, vol 21, pp. 42-57, 2002. https://doi.org/10.1109/51.993193
  2. R. J. Lee, I. C. Chol, C. C. Lai, M. H. Liu, and M. J. Chiu, "A Novel QRS Detection Algorithm Applied to the Analysis for Heart Rate Variability of Patients with Sleep Apnea," Journal of Biomedical Engineering: Applications, Basis and Communications(BME), vol. 17, pp. 258-262, 2005. https://doi.org/10.4015/S101623720500038X
  3. Gary, M. Frisen, Thomas, C. Jannett, Manal Afify Jadallah, Stanford L. Yates, Stephen R. Quint, and H. Troy Nagle, “A Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms,” IEEE Trans. Biomedical Engineering, vol. 37, no. 1, pp. 85-98, 1990. https://doi.org/10.1109/10.43620
  4. J. S. Sahambi, S. N. Tandon, and R. K. P. Bhatt, “Wavelet Based ST-segment Analysis,” Medical & Biological Engineering & Computing, vol. 36, no. 5, pp. 568-572, 1998. https://doi.org/10.1007/BF02524425
  5. S. Kadambe, R. Murray, and G. Boudreaux-Bartels, "Wavelet Transform Based QRS Complex Detector," IEEE Trans. Biometrical Engineering, vol 46, no. 7, pp. 838-848, 1999. https://doi.org/10.1109/10.771194
  6. S. H. Oguz, "A Morphology Based Algorithm for Baseline Wander Elimination in ECG Records," Biomedical Engineering Days, pp. 157-160, 1992.
  7. J. A. Van Alst, T. S. Schilder, "Removal of Base-line Wander and Power-line Interference from the ECG by an Efficient FIR Filter with a Reduced Number of Taps," IEEE Trans. Biometical Engineering, vol. BME-32, no. 12, pp. 1052-1060, 1985. https://doi.org/10.1109/TBME.1985.325514
  8. R. Jane, P. Laguna, N. V. Thakor, and P. Caminal, "Adaptive Baseline Wander Removal in the ECG: Comparative Analysis with Cubic Spline Technique," Computer in Cardiology, pp. 143-146, 1992.
  9. Angelica R. Jimenez-Sanchez, Jorge D. Mendiola-Santibanez, Ivan R. Terol-Villalobos, Gilberto Herrera-Ruiz, Damian Vargas-Vazquez, Juan J. Garcia-Escalante, and Alberto Lara-Guevara, "Morphological Background Detection and Enhancement of Images with Poor Lighting," IEEE Trans. Image Processing, vol 18, no. 3, pp. 613-623, 2009. https://doi.org/10.1109/TIP.2008.2010152

피인용 문헌

  1. Unusual Waveform Detection Algorithm in Arrhythmia ECG Signal vol.23, pp.4, 2013, https://doi.org/10.5391/JKIIS.2013.23.4.292
  2. R-Peak Detection Algorithm in ECG Signal Based on Multi-Scaled Primitive Signal vol.19, pp.5, 2016, https://doi.org/10.9717/kmms.2016.19.5.818
  3. Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal vol.51, pp.9, 2014, https://doi.org/10.5573/ieie.2014.51.9.200