DOI QR코드

DOI QR Code

Surface Morphology and Electron Transport Properties of Composite Films by Poly-N-vinylcarbazole/Polyaniline

  • Basavaraja, C. (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Jo, Eun-Ae (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Bong-Sung (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Mallikarjuna, H. (Department of Chemistry, A.G.M. Rural Engineering College) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Basic Science, Inje University)
  • Received : 2010.07.31
  • Accepted : 2010.09.02
  • Published : 2010.10.20

Abstract

Poly-N-vinylcarbazole/polyaniline (PVK-PANI) composites are synthesized by varying target loading concentrations of aniline (0.025 - 0.1 M). The surface morphology of the composites is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The temperature-dependent DC conductivity of PVK-PANI composite films was studied at the temperature range of 300 - 500 K. The data suggest that the conductivity increase with an increase in aniline concentration in the composite with an increase in temperature. Further based on the conductivity behavior we can suggest that the PVK-PANI composites show a semiconducting behavior with a positive temperature coefficient of resistivity (TCR). The enhanced conductivity and the positive TCR of the PVK-PANI composite films may be due to the strong interaction between PANI and PVK in the composite films.

Keywords

References

  1. Gubbels, F.; Jerome, R.; Vanlathem, E.; Deltour, R.; Blacher, S.; Brouers, F. Chem. Mater. 1998, 10, 1227. https://doi.org/10.1021/cm970594d
  2. Stephen, H.; Foulger, S. H. J. Polym. Sci. B 1999, 37, 1899. https://doi.org/10.1002/(SICI)1099-0488(19990801)37:15<1899::AID-POLB14>3.0.CO;2-0
  3. Feller, J. F.; Linossier, I.; Levesque, G. Polym. Adv. Technol. 2002, 13, 714. https://doi.org/10.1002/pat.254
  4. Tchoudakov, R.; Narkis, M.; Siegmann, A. Polym. Eng. Sci. 2004, 44, 528. https://doi.org/10.1002/pen.20047
  5. Feller, J. F. J. Appl. Polym. Sci. 2004, 91, 2151. https://doi.org/10.1002/app.13337
  6. Luo, Y.; Li, Y.; Li, Z. Smart Mater. Struct. 2006, 15(6), 1979. https://doi.org/10.1088/0964-1726/15/6/055
  7. Mamunya, Y. P.; Muzychenko, Y. V.; Lebedev, E. V.; Boiteux, G.; Seytre, G.; Boullanger, C.; Pissis, P. Polym. Eng. Sci. 2007, 47, 34. https://doi.org/10.1002/pen.20658
  8. Bloor, D.; Donnelly, K.; Hands, P. J.; Laughlin, P.; Lussey, D. J. Phys. D: Appl. Phys. 2005, 38, 2851. https://doi.org/10.1088/0022-3727/38/16/018
  9. Grunlan, J. C.; Mehrabi, A. R.; Bannon, M. V.; Bahr, J. L. Adv. Mater. 2004, 16, 150. https://doi.org/10.1002/adma.200305409
  10. Zhang, B.; Fu, R. W.; Zhang, M. Q.; Dong, X. M.; Lan, P. L.; Qiu, J. S. Sensors and Actuators B 2005, 109(2), 323. https://doi.org/10.1016/j.snb.2004.12.066
  11. Potschke, P.; Kretzschmar, B.; Janke, A. Compos. Sci. Technol. 2006, 67, 855.
  12. Grunlan, J. C.; Kim, Y. S.; Ziaee, S.; Wei, X.; Abdel-Magid, B.; Tao, K. Macromol. Mater. Eng. 2006, 291, 1035. https://doi.org/10.1002/mame.200600191
  13. Tsubokawa, N.; Inaba, J.; Arai, K.; Fujiki, K. Polym. Bull. 2000, 44, 317. https://doi.org/10.1007/s002890050608
  14. Wu, G.; Asai, S.; Sumita, M. Macromolecules 2002, 35, 1708. https://doi.org/10.1021/ma011658f
  15. Valentini, L.; Bavastrello, V.; Stura, E.; Armentano, I.; Nicolini, C.; Kenny, J. M. Chem. Phys. Lett. 2004, 383, 617. https://doi.org/10.1016/j.cplett.2003.11.091
  16. Bradley, K.; Gabriel, J. C. P.; Gruner, G. Nano Lett. 2003, 3, 1353. https://doi.org/10.1021/nl0344864
  17. Ram, M. K.; Bertoncello, P.; Nicolini, C. J. Mater. Sci. 2003, 38, 4951. https://doi.org/10.1023/B:JMSC.0000004418.57107.f8
  18. Han, Y.; Wu, G.; Chen, H.; Wang, M. J. Appl. Polym. Sci. 2008, 109(2), 882. https://doi.org/10.1002/app.28110
  19. Roman, L. S.; Mammo, L.; Pettersson, A. A.; Andersson, M. R.; Inganas, O. Adv. Mater. 1998, 10, 774. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<774::AID-ADMA774>3.0.CO;2-J
  20. Yu, Y. H.; Lin, C. Y.; Yeh, J. M.; Lin, W. H. Polymer 2003, 44(12), 3553. https://doi.org/10.1016/S0032-3861(03)00062-4
  21. Kaune, G.; Wang, W.; Metwalli, E.; Ruderer, M.; Robner, R.; Roth, S. V.; Buschbaum, P. M. Eur. Phys. J. 2008, 26, 73.
  22. Maity, A.; Biswas, M. J. J. Ind. Eng. Chem. 2006, 12, 311. https://doi.org/10.1021/ie50123a042
  23. Ballav, N.; Maity, A.; Biswas, M. Mater. Chem. Phys. 2004, 87, 120. https://doi.org/10.1016/j.matchemphys.2004.05.006
  24. Dinh, N. N.; Chi, L. H.; Long, N. T.; Chung , T. T.; Trung, T. Q.; Kim, H. K. J. Phys.: Conf. Ser. 2009, 187, 012029. https://doi.org/10.1088/1742-6596/187/1/012029
  25. Penwell, R. C.; Ganguly, B. N.; Smith, T. W. J. Polym. Sci: Macromol. Rev. 2003, 13(1), 63. https://doi.org/10.1002/pol.1978.230130102
  26. Yoon, S. J.; Chun, H.; Lee, M. S.; Kim, N. J. Synth. Met. 2009, 159(5-6), 518. https://doi.org/10.1016/j.synthmet.2008.11.011
  27. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Revanasiddappa, M.; Huh, D. S. Bull. Korean Chem. Soc. 2010, 31(2), 298. https://doi.org/10.5012/bkcs.2010.31.02.298
  28. Dubois, J. E.; Desbene-Monvernay, A.; Lacaze, P. C. J. Electroanal. Chem. 1982, 132(25), 177. https://doi.org/10.1016/0022-0728(82)85016-X
  29. Stephen, C. H. J. Poly. Sci. Part B: Poly. Phys. 2003, 41(8), 807. https://doi.org/10.1002/polb.10437
  30. Bhadra, J.; Sarkar, D. Mater. Lett. 2009, 63, 69. https://doi.org/10.1016/j.matlet.2008.09.005
  31. Chiou, N. R.; Epstein, A. J. Synth. Met. 2005, 153(1-3), 69. https://doi.org/10.1016/j.synthmet.2005.07.145
  32. Sun, L.; Liu, H.; Clark, R.; Yang, S. C. Synth. Met. 1997, 84(1-3), 67. https://doi.org/10.1016/S0379-6779(96)03839-8
  33. Samuelson, L.; Liu, W.; Nagarajan, R.; Kumar, J.; Bruno, F. F.; Cholli, A.; Tripathy, S. Synth. Met. 2001, 119(1-3), 271. https://doi.org/10.1016/S0379-6779(00)01452-1
  34. Nagarajan, R.; Tripathy, S.; Kumar, J.; Bruno, F. F.; Samuelson, L. Macromolecules 2000, 33(26), 9542. https://doi.org/10.1021/ma000954+
  35. Wei, L.; Cholli, A. L.; Nagarajan, R.; Kumar, J.; Tripathy, S.; Ferdinando, B. F.; Samuelson, L. J. Am. Chem. Soc. 1999, 121(49), 11345. https://doi.org/10.1021/ja9926156
  36. Wei, L.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L. J. Am. Chem. Soc. 1999, 121(1), 71. https://doi.org/10.1021/ja982270b
  37. Lv, M. Y.; Ge, H. Y.; Chen. J. J. Polym. Res. 2009, 16, 513. https://doi.org/10.1007/s10965-008-9254-7
  38. Yusoff, A. N.; Abdullah, M. H.; Mansor, A. A.; Hamid, S. A. A. J. Appl. Phys. 2002, 92(2), 876. https://doi.org/10.1063/1.1489092
  39. Hoang, N. H.; Wojkiewicz, J. L.; Miane, J. L.; Biscarro, R. S. Polym. Adv. Technol. 2007, 18, 257. https://doi.org/10.1002/pat.829
  40. Basavaraja, C.; Pierson, R.; Huh, D. S. J. Appl. Polym. Sci. 2008, 108, 1070. https://doi.org/10.1002/app.27582
  41. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S. J. Polym. Sci. B: Polym. Phys. 2009, 47, 36. https://doi.org/10.1002/polb.21611
  42. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Huh, D. S. Macromol. Res. 2010, 18(3), 222. https://doi.org/10.1007/s13233-010-0305-7
  43. Basavaraja, C.; Jo, E. A.; Huh, D. S. Mater. Lett. 2010, 64, 762-64. https://doi.org/10.1016/j.matlet.2010.01.008
  44. Basavaraja, C.; Jo, E. A.; Kim, B. S.; Huh, D. S. Chem. Phys. Lett. 2010, 492, 272. https://doi.org/10.1016/j.cplett.2010.04.059
  45. Basavaraja, C.; Jo, E. A.; Huh, D. S. Polym. Comp. 2010, in press.
  46. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Huh, D. S. J. Polym. Res. 2010, DOI 10.1007/s10965-009-9378-4.
  47. Basavaraja, C.; Jo, E. A.; Kim, B. S.; Kim, D. G.; Huh, D. S. Polym. Eng. Sci. 2010, in press.
  48. Basavaraja, C.; Pierson, R.; Vishnuvardhan, T. K.; Huh, D. S. Eur. Poly. J. 2008, 44, 1556. https://doi.org/10.1016/j.eurpolymj.2008.02.015
  49. Khan, R.; Dhayal, M. Biosensors and Bioelectronics 2009, 20, 1700.
  50. Zhang, L.; Liu, P.; Su, Z. Polymer Degradation and Stability 2006, 91, 2213. https://doi.org/10.1016/j.polymdegradstab.2006.01.002
  51. Ashutosh, T. J. Polym. Res. 2008, 15, 337. https://doi.org/10.1007/s10965-008-9176-4
  52. Ayse, G. Y.; Gok, A. Synth. Met. 2007, 157(4-5), 235. https://doi.org/10.1016/j.synthmet.2007.03.001
  53. Basavarja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Revanasiddappa, M.; Huh, D. S. Bull. Korean Chem. Soc. 2008, 29(12), 2423. https://doi.org/10.5012/bkcs.2008.29.12.2423
  54. Feng, X.; Liu, Y.; Lu, C.; Hou, W.; Zhu, J. J. Nanotechnology 2006, 17(14), 3578. https://doi.org/10.1088/0957-4484/17/14/037
  55. Holland, E. R.; Pomfret, S. J.; Adams, P. N.; Monakan, A. P. J. Phys: Condens. Matter. 1996, 8, 2991. https://doi.org/10.1088/0953-8984/8/17/011
  56. Joo, J.; Long, S. M.; Pouget, J. P.; Oh, E. J.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B 1998, 57, 9567. https://doi.org/10.1103/PhysRevB.57.9567
  57. Ohe, K.; Naito, Y. Jpn. J. Appl. Phys. 1970, 10, 99. https://doi.org/10.1143/JJAP.10.99
  58. Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Clarendon Press: Oxford, 1979.

Cited by

  1. Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.927