DOI QR코드

DOI QR Code

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa (Department of Biochemistry and Institute for Life Sciences, Kangwon National University)
  • Received : 2010.06.20
  • Accepted : 2010.08.26
  • Published : 2010.10.20

Abstract

Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.

Keywords

References

  1. Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S. Nat. Rev. Mol. Cell. Biol. 2005, 6, 150. https://doi.org/10.1038/nrm1569
  2. Chan, N. L.; Rogers, P. H.; Arnone, A. Biochemistry 1998, 37, 16459. https://doi.org/10.1021/bi9816711
  3. Weichsel, A.; Brailey, J. L.; Montfort, W. R. Biochemistry 2007, 46, 1219. https://doi.org/10.1021/bi061878r
  4. Schreiter, E. R.; Rodriguez, M. M.; Weichsel, A.; Monfort, W. R.; Bonaventura, J. J. Biol. Chem. 2007, 282, 19773. https://doi.org/10.1074/jbc.M701363200
  5. Chen, Y. Y.; Chu, H. M.; Pan, K. T.; Teng, C. H.; Wang, D. L.; Wang, A. H.; Khoo, K. H.; Meng, T. C. J. Biol. Chem. 2008, 283, 35265. https://doi.org/10.1074/jbc.M805287200
  6. Homeyer, N.; Horn, A. H.; Lanig, H.; Sticht, H. J. Mol. Model. 2006, 12, 281. https://doi.org/10.1007/s00894-005-0028-4
  7. Kona, J.; Brinck, T. Org. Biomol. Chem. 2006, 4, 3468. https://doi.org/10.1039/b604602a
  8. Han, S. Biochem. Biophys. Res. Commun. 2007, 362, 532. https://doi.org/10.1016/j.bbrc.2007.08.037
  9. Han, S. Biochem. Biophys. Res. Commun. 2008, 377, 612. https://doi.org/10.1016/j.bbrc.2008.10.017
  10. Cieplak, P.; Cornell, W. D.; Bayly, C. I.; Kollman, P. A. J. Comput. Chem. 1995, 16, 1357. https://doi.org/10.1002/jcc.540161106
  11. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. https://doi.org/10.1002/jcc.20035
  12. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25, 247. https://doi.org/10.1016/j.jmgm.2005.12.005
  13. Goddard, T. D.; Huang, C. C.; Ferrin, T. E. J. Struct. Biol. 2007, 157, 281. https://doi.org/10.1016/j.jsb.2006.06.010
  14. Frisch, M. J. et al., Gaussian03 program, Revision A.9 package, Gaussian, Inc.; Pittsburgh, PA, 2003.
  15. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. https://doi.org/10.1021/ct700301q
  16. Sorin, E. J.; Pande, V. S. Biophys. J. 2005, 88, 2472. https://doi.org/10.1529/biophysj.104.051938
  17. Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. R.; Cheatham, I. T. E.; De-Bolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comp. Phys. Commun. 1995, 91, 1. https://doi.org/10.1016/0010-4655(95)00041-D
  18. Mobley, D. L.; Chodera, J. D.; Dill, K. A. J. Chem. Phys. 2006, 125, 084902. https://doi.org/10.1063/1.2221683
  19. Pigache, A.; Cieplak, P.; Dupradeau, F.-Y. Automatic and Highly Reproducible RESP and ESP Charge Derivation: Application to the Development of Programs RED and X RED, 227th ACS National Meeting, Anaheim, CA, USA, 2004.
  20. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. https://doi.org/10.1063/1.470117
  21. Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comp. Chem. 1997, 18, 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  22. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. https://doi.org/10.1063/1.448118
  23. Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101. https://doi.org/10.1063/1.2408420
  24. Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182. https://doi.org/10.1063/1.328693
  25. Nose, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055. https://doi.org/10.1080/00268978300102851
  26. Wang, J.; Cieplak, P.; Kollman, P. A. J. Comp. Chem. 2000, 21, 1049. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  27. Arulsamy, N.; Bohle, D. S.; Butt, J. A.; Irvine, G. J.; Jordan, P. A.; Sagan, E. J. Am. Chem. Soc. 1999, 121, 7115. https://doi.org/10.1021/ja9901314

Cited by

  1. The Radical Ion Chemistry of S-Nitrosylated Peptides vol.23, pp.12, 2012, https://doi.org/10.1007/s13361-012-0492-x