DOI QR코드

DOI QR Code

Enhanced Photocatalytic Activity of 3,4,9,10-Perylenetetracarboxylic Diimide Modified Titanium Dioxide Under Visible Light Irradiation

  • Received : 2010.08.09
  • Accepted : 2010.08.18
  • Published : 2010.10.20

Abstract

A method to improve the photocatalytic activity of titanium dioxide by modification with a sensitizer and a metal oxide is proposed. To achieve this goal, we used metal oxides as dopants. In particular, $CaWO_4$ and $Gd_2O_2S$:Tb were used because their 2.6 eV and 2.2 eV band gap energy and optical properties have a large positive effect on photocatalysis. The improvement in the photocatalytic activity of $TiO_2$ modified with $Gd_2O_2S$:Tb under ultraviolet light irradiation is described in a previous study. The present work focuses on the sensitization of metal oxide-modified $TiO_2$. Having observed the ultraviolet-visible absorption spectra of 3,4,9,10-Perylenetetracarboxylic diimide in the wide visible-light region from 400 nm to 650 nm and the broad peaks in its photoluminescence spectra at 695 nm and 717 nm, we decided to use this perylene dye to sensitize modified $TiO_2$ to enhance its activity as a visible-light harvesting photocatalyst. We also explored the positive effects thin-film surface changes stemming from ultraviolet pre-treatment have on photocatalytic activity. Finally, we subjected several metal oxide-modified $TiO_2$ products sensitized by the perylene dye to ultraviolet pre-treatment, obtaining the most active photocatalysts.

Keywords

References

  1. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C 2000, 1, 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  2. Minabe, T.; Tryk, D. A.; Sawunyama, P.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. J. Photochem. Photobiol. A 2000, 137, 53. https://doi.org/10.1016/S1010-6030(00)00350-6
  3. Nguyen, V. N. H.; Amal, R.; Beydoun, D. Chem. Eng. Sci. 2003, 58, 4429. https://doi.org/10.1016/S0009-2509(03)00336-1
  4. Colon, G. et al., J. Photochem. Photobiol. A 2006, 179, 20. https://doi.org/10.1016/j.jphotochem.2005.07.007
  5. Morikawa, T.; Irokawa, Y.; Ohwaki, T. Appl. Catal. A 2006, 314, 123. https://doi.org/10.1016/j.apcata.2006.08.011
  6. Tryba, B. Int. J. Photoenergy. 2008, 2008, 15.
  7. Ding, H.; Sun, H.; Shan, Y. J. Photochem. Photobiol. A 2005, 169, 101. https://doi.org/10.1016/j.jphotochem.2004.04.015
  8. Ajito, K.; Sukamto, J. P. H.; Nagahara, L. A.; Hashimoto, K.; Fujishima, A. J. Electroanal. Chem. 1995, 386, 229. https://doi.org/10.1016/0022-0728(95)03909-Z
  9. Zhang, X.; Udagawa, K.; Liu, Z.; Nishimoto, S.; Xu, C.; Liu, Y.; Sakai, H.; Abe, M.; Murakami, T.; Fujishma, A. J. Photochem. Photobiol. A 2009, 202, 39. https://doi.org/10.1016/j.jphotochem.2008.11.007
  10. Li, D.; Huang, H.; Chen, X.; Chen, Z.; Li, W.; Ye, D.; Fu, X. J. Solid State Chem. 2007, 180, 2630. https://doi.org/10.1016/j.jssc.2007.07.009
  11. Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483. https://doi.org/10.1021/jp030133h
  12. Brochsztain, S. et al., Microporous Mesoporous Mater. 2007, 102, 258. https://doi.org/10.1016/j.micromeso.2006.12.042
  13. Ko, H. C.; Kim, S.; Choi, W.; Moon, B.; Lee, H. Chem. Commun. 2006, 69.
  14. Kim, B. G.; Lee, H. G.; Kim, H. S.; Kim, Y. S. Bull. Korean. Chem. Soc. 2009, 30, 675. https://doi.org/10.5012/bkcs.2009.30.3.675
  15. Liu, B.; Wen, L.; Zhao, X. Appl. Surf. Sci. 2008, 255, 2752. https://doi.org/10.1016/j.apsusc.2008.08.008
  16. Janssen, R. A. J. et al., J. Phys. Chem. A 2008, 112, 5846. https://doi.org/10.1021/jp8022524
  17. Djurisic, A. B. et al., Adv. Funct. Mater. 2008, 18, 566. https://doi.org/10.1002/adfm.200700264

Cited by

  1. Microwave Synthesis, Electrophoretic Deposition of Thin Film, and Photocatalytic Properties for Methylene Blue and Methyl Red Dyes vol.2014, pp.2090-6072, 2014, https://doi.org/10.1155/2014/326747
  2. Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative vol.21, pp.19, 2014, https://doi.org/10.1007/s11356-014-2546-z
  3. vol.6, pp.23, 2015, https://doi.org/10.1021/acs.jpclett.5b02194
  4. Real roles of perylene diimides for improving photocatalytic activity vol.10, pp.39, 2010, https://doi.org/10.1039/d0ra03421e
  5. Enhancing the performance of pollution degradation through secondary self-assembled composite supramolecular heterojunction photocatalyst BiOCl/PDI under visible light irradiation vol.253, pp.None, 2010, https://doi.org/10.1016/j.chemosphere.2020.126751
  6. Perylene Tetracarboxylic Tetraester Sensitized Titanium Dioxide Nanocomposite for Enhanced Photodegradation vol.15, pp.8, 2010, https://doi.org/10.1142/s1793292020501003
  7. Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation vol.780, pp.None, 2010, https://doi.org/10.1016/j.scitotenv.2021.146483