DOI QR코드

DOI QR Code

Low Temperature Growth of Single-walled Carbon Nanotube Forest

  • Lee, Il-Ha (Department of Energy Science, BK21 Physics Division, Sungkyunkwan Advanced Institute of Nanotechnology, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University) ;
  • Im, Ji-Woon (School of Physics & Astronomy, Seoul National University) ;
  • Kim, Un-Jeong (Samsung Advanced Institute of Technology) ;
  • Bae, Eun-Ju (Samsung Advanced Institute of Technology) ;
  • Kim, Kyoung-Kook (Department of Nano-Optical Engineering, Korea Polytechnic University) ;
  • Lee, Eun-Hong (Samsung Advanced Institute of Technology) ;
  • Lee, Young-Hee (Department of Energy Science, BK21 Physics Division, Sungkyunkwan Advanced Institute of Nanotechnology, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University) ;
  • Hong, Seung-Hun (School of Physics & Astronomy, Seoul National University) ;
  • Min, Yo-Sep (Department of Chemical Engineering, Konkuk University)
  • Received : 2010.03.15
  • Accepted : 2010.08.16
  • Published : 2010.10.20

Abstract

Forest of single-walled carbon nanotubes (SWNTs) was grown at $450^{\circ}C$ by water-plasma chemical vapor deposition using ultrathin iron on alumina supporting film. The growth rate of the SWNT forest is ${\sim}0.9\;{\mu}m/min$, and the diameters of nanotubes are mainly in a range of 3.0 ~ 3.5 nm. The low intensity ratio of D- to G-band ($I_D/I_G$ ~ 0.098) in Raman spectra indicates that our SWNT forest grown at $450^{\circ}C$ is fairly pure and crystalline. This low temperature growth of SWNT forest may enable variable applications requiring the vertically-aligned nanotubes to obtain large surface area.

Keywords

References

  1. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds.; Springer: Berlin, 2001.
  2. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362. https://doi.org/10.1126/science.1104962
  3. Futaba, D. N.; Hata, K.; Yamada, T.; Mizuno, K.; Yumura, M.; Iijima, S. Phys. Rev. Lett. 2005, 95, 056104. https://doi.org/10.1103/PhysRevLett.95.056104
  4. Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y; Gibbons, J.; Dai, H. Proc. Natl. Acad. Sci. USA 2005, 102, 16141. https://doi.org/10.1073/pnas.0507064102
  5. Cantoro, M.; Hofmann, S.; Pisano, S.; Scardaci, V.; Parvez, A.; Ducati, C.; Ferrari, A. C.; Blackbum, A. M.; Wang, K.-Y.; Robertson, J. Nano Lett. 2006, 6, 1107. https://doi.org/10.1021/nl060068y
  6. Zhong, G.; Iwasaki, T.; Honda, K.; Furukawa, Y.; Ohdomari, I.; Kawarada, H. Jpn. J. Appl. Phys. 2005, 44, 1558. https://doi.org/10.1143/JJAP.44.1558
  7. Min, Y.-S.; Bae, E. J.; Oh, B. S.; Kang, D.; Park, W. J. Am. Chem. Soc. 2005, 125, 12498.
  8. Bae, E. J.; Min, Y.-S.; Kang, D.; Ko, J.-H.; Park, W. Chem. Mater. 2005, 17, 5141. https://doi.org/10.1021/cm050889o
  9. Min, Y.-S.; Bae, E. J.; Park, J. B.; Park, W. Nanotechnology 2006, 17, 116. https://doi.org/10.1088/0957-4484/17/1/019
  10. Bae, E. J.; Min, Y.-S.; Kim, U.; Park, W. Nanotechnology 2007, 18, 015601. https://doi.org/10.1088/0957-4484/18/1/015601
  11. Zhong, G.; Iwasaki, T.; Robertson, J.; Kawarada, H. J. Phys. Chem. B 2007, 111, 1907. https://doi.org/10.1021/jp067776s

Cited by

  1. Botryoidal growth of crystalline ZnO nanoparticles on a forest of single-walled carbon nanotubes by atomic layer deposition vol.13, pp.10, 2011, https://doi.org/10.1039/c0ce00875c
  2. Remote Plasma-Assisted CVD Growth of Carbon Nanotubes in an Optimised Rapid Thermal Reactor vol.18, pp.1-3, 2012, https://doi.org/10.1002/cvde.201106925
  3. Carbon nanotubes and graphene towards soft electronics vol.1, pp.1, 2014, https://doi.org/10.1186/s40580-014-0015-5
  4. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes vol.5, pp.1, 2015, https://doi.org/10.1038/srep16612
  5. Coral-like amorphous carbon nanotubes synthesized by a modified arc discharge vol.25, pp.6, 2017, https://doi.org/10.1080/1536383X.2017.1306517
  6. Observation of localized strains on vertically grown single-walled carbon nanotube forests via polarized Raman spectroscopy vol.25, pp.2, 2010, https://doi.org/10.1088/0957-4484/25/2/025705
  7. Mass spectrometric study of ammonia/methane surface-wave plasma applied to low-temperature growth of carbon nanomaterials vol.48, pp.4, 2010, https://doi.org/10.1088/0022-3727/48/4/045201