DOI QR코드

DOI QR Code

Solubility of Carbon Dioxide in Strongly Basic Ionic Liquid

  • Sung, Jun-Kyung (Climate Change Technology Research Division, Korea Institute of Energy Research) ;
  • Kim, Sung-Hyun (Department of Chemical Engineering, Korea University) ;
  • Cheong, Min-Serk (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Baek, Il-Hyun (Climate Change Technology Research Division, Korea Institute of Energy Research)
  • Received : 2010.06.15
  • Accepted : 2010.08.11
  • Published : 2010.10.20

Abstract

For the purpose of developing advanced new absorbents for carbon dioxide, ionic liquids (ILs) are considered as alternative materials due to their superior properties to conventional organic solvents. Since low $CO_2$ solubility in ionic liquids is a major concern for their application as absorbents, it is essential to focus on improving $CO_2$ absorbing capability of ILs. In this paper, strongly basic ionic liquids, namely [$C_n$-mim]OPh (n = 2, 4, 6), have been synthesized and studied over a wide range of temperature and pressure changes. [$C_n$-mim]OPh can be easily synthesized from corresponding [$C_n$-mim]Cl and sodium phenoxide and has been found to be good $CO_2$ absorbents.

Keywords

References

  1. Cho, M. H.; Lee, H. J.; Kim, H. G. Korean Chem. Eng. Res. 2010, 48(1), 1.
  2. Jung, S. K.; Kim, D. H.; Baek, I. H.; Lee, S. H. Korean Chem. Eng. Res. 2008, 46(3), 492.
  3. Zhang, S.; Chen, Y.; Li, F.; Lu, X.; Dai, W.; Mori, R. Catal. Today 2006, 115, 61. https://doi.org/10.1016/j.cattod.2006.02.021
  4. Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, 2003.
  5. Lee, H. J.; Lee, J. S.; Ahn, B. S.; Kim, H. S. J. Ind. Eng. Chem. 2005, 16(5), 595. https://doi.org/10.1021/ie50174a023
  6. Huang, J.; Rüther, T. Aust. J. Chem. 2009, 62, 298. https://doi.org/10.1071/CH08559
  7. Xue, H.; Shreeve, J. M. Eur. J. Inorg. Chem. 2005, 2573.
  8. Bate, E.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926. https://doi.org/10.1021/ja017593d
  9. Yu, G.; Zhang, S.; Yao, X.; Zhang, J.; Dong, K.; Dai, W.; Mori. R. Ind. Eng. Chem. Res. 2006, 45, 2875. https://doi.org/10.1021/ie050975y
  10. Huang, J.; Riisager, A.; Berg, R. W.; Fehrmann, R. J. Mol. Catal. A: Chem. 2008, 279, 170. https://doi.org/10.1016/j.molcata.2007.07.036
  11. Palgunadi, J.; Im, J. K.; Kang, J. E.; Kim, H. S.; Cheong, M. Bull. Kor. Chem. Soc. 2010, 31(1), 146. https://doi.org/10.5012/bkcs.2010.31.01.146
  12. Keskin, S.; Kayrak-Taly, D.; Akman, U.; Hortaçsu, O. J. Supercrit. Fluid. 2007, 43, 150. https://doi.org/10.1016/j.supflu.2007.05.013
  13. Palgunadi, J.; Kang, J. E.; Cheong, M.; Kim, H. G.; Lee, H. J.; Kim, H. S. Bull. Kor. Chem. Soc. 2009, 30(8), 1749. https://doi.org/10.5012/bkcs.2009.30.8.1749
  14. Davis, J. H. Chem. Lett. 2004, 33(9), 1072. https://doi.org/10.1246/cl.2004.1072
  15. Bishnoi, S.; Rochelle, G. T. AIChE Journal 2002, 48(12), 2788. https://doi.org/10.1002/aic.690481208
  16. Petermann, M.; Weissert, T.; Kareth, S.; Losch, H. W.; Dreisbach, F. J. Supercrit. Fluid. 2008, 45, 156. https://doi.org/10.1016/j.supflu.2007.07.016
  17. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  18. Cassol, C. C.; Ebeling, G.; Ferrera, B.; Dupont, J. Adv. Synth. Catal. 2006, 348, 243. https://doi.org/10.1002/adsc.200505295
  19. Ely, J. F.; Magee, J. W.; Haynes, W. M. Thermophysical Properties for Special High $CO_{2}$ Content Mixtures, Research Report-110; Gas Processors Association: Tulsa, 1987.
  20. Kim, Y. S.; Choi, W. Y.; Jang, J. H.; Yoo, K.-P.; Lee, C. S. Fluid Phase Equilibr. 2005, 228-229, 439. https://doi.org/10.1016/j.fluid.2004.09.006
  21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, revision C.02, Gaussian, Inc., Pittsburgh, PA, 2004.
  22. Muldoon, M. J.; Aki, S. N.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. J. Phys. Chem. B 2007, 30, 9001
  23. Kazarian, S. G.; Briscoe, B. J.; Welton, T. Chem. Commun. 2000, 2047.
  24. Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke. J. F. J. Phys. Chem. B 2004, 108(52), 20355. https://doi.org/10.1021/jp046895+
  25. Cadena, C.; Anthony, J. K.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126(16), 5300. https://doi.org/10.1021/ja039615x
  26. Lee, J. M.; Palgunadi, J.; Kim, J. H.; Jung, S.; Choi, Y.; Cheong, M.; Kim, H. S. Phys. Chem. Chem. Phys. 2010, 12, 1812. https://doi.org/10.1039/b915989d

Cited by

  1. Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture vol.24, pp.29, 2017, https://doi.org/10.1007/s11356-017-9913-5
  2. A CO 2 Absorbent Articulated by Imitating the RUBISCO Regulation Site vol.42, pp.2, 2010, https://doi.org/10.1002/bkcs.12180