DOI QR코드

DOI QR Code

Biochemical and Structural Characterization of HP1423 (Y1423_HELPY) from Helicobacter pylori

  • Kim, Ji-Hun (Research Inst. of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Lee, Ki-Young (Research Inst. of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Park, Sung-Jean (Gachon University of Medicine and Science) ;
  • Lee, Bong-Jin (Research Inst. of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Received : 2010.04.21
  • Published : 2010.06.20

Abstract

HP1423 (Y1423_HELPY) is a conserved hypothetical protein from H. pylori strain 26695. However, Sequence Blast result indicates that HP1423 belongs to S4 (PF01479) superfamily. According to Pfam database, the S4 domain is a small domain consisting of 60-65 amino acid residues, that probably mediates binding to RNA. In this study, we report the sequence-specific backbone resonance assignment of HP1423, which has 84 amino acid residues. We could assign unambiguously about 88% of all $^{1}H_{N}$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C=O$ resonances. We could not detect the resonances from residues 15-20, and disappearance of these peaks seems to be related with the intermediate-conformational exchange. These assigned NMR peaks of HP1423 can be used for studying the role of protein dynamics in millisecond timescale, and Protein-RNA binding.

Keywords

References

  1. T.L. Cover, M.J. Blaser, Adv. Intern. Med. 41, 85-117, (1996).
  2. S.B. Jang, C. Ma, S.J. Park, A.R. Kwon, B.J. Lee. JKMRS 13,117-125, (2009).
  3. W.J. Kim, J.S. Lim, W.S. Son, H.C. Ahn, B.J. Lee, JKMRS 12, 65-73, (2008).
  4. A.P. Carter, W.M. Jr. Clemons, D.E. Brodersen, R.J. Morgan-Warren, B.T. Wimberly, Nature. 407, 340-348, (2000). https://doi.org/10.1038/35030019
  5. A. Matte, G.V. Louie, J. Sivaraman, M. Cygler, S.K. Burley, Acta Crystallogr. Sect. F :Struct. Biol. Cryst. Commun. 61(Pt 4), 350-354, (2005).
  6. A. Yaremchuk, I. Kriklivyi, M. Tukalo, S.Cusack, EMBO J.21, 3829-3840, (2000).
  7. B.L. Staker, P. Korber, J.C. Bardwell, M.A. Saper, EMBO J. 19, 749-757, (2000). https://doi.org/10.1093/emboj/19.4.749
  8. L. Volpon, C. Lievre, M.J. Osborne, S. Gandhi, P. Iannuzzi, R. Larocque, A. Matte, M. Cygler, K. Gehring, I. Ekiel, J. Bacteriol. 185, 4204-4210, (2003). https://doi.org/10.1128/JB.185.14.4204-4210.2003
  9. L. Aravind, E.V. Koonin, J. Mol. Evol. 48, 291-302, (1999). https://doi.org/10.1007/PL00006472
  10. F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfifer, A. Bax, J. Biomol. NMR 6, 277-293, (1995).
  11. B.A. Johnson, Methods Mol. Biol. 278, 313-352, (2004).
  12. D.S. Wishart, B.D. Sykes, J. Biomol. NMR 4, 171-180, (1994).
  13. G. Cornilescu, F. Delaglio, A. Bax, J. Biomol. NMR 13, 289-302, (1999). https://doi.org/10.1023/A:1008392405740
  14. B.L. Staker, P. Korber, J.C. Bardwell, M.A. Saper. EMBO J. 19, 749-757, (2000). https://doi.org/10.1093/emboj/19.4.749
  15. K. Henzler-Wildman, D. Kern, Nature 450, 964-972, (2007). https://doi.org/10.1038/nature06522