References
- Bullen, T.D., Krabbenhoft, D.P. and Kendall, C. (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta, v.60, p.1807-1822. https://doi.org/10.1016/0016-7037(96)00052-X
- Edmunds, W.M., Kay, R.L.F., Miles, D.L. and Cook, J.M. (1987) The evolution of saline and thermal groundwaters in the Carmenellis granite. Mineralogical Magagine, v.48, p.407-424.
- Frost, C.D., Pearson, B.N., Ogle, K.M., Heffern, E.L. and Lyman, R.M. (2002) Sr isotopic tracing of aquifer interactions in an area of accelerating coal-bead methane production. Geology, v.30, p.923-926. https://doi.org/10.1130/0091-7613(2002)030<0923:SITOAI>2.0.CO;2
- Gosselin, D.C., Harvey, F.E., Frost, C., Stotler, R. and Macfarlane, P.A. (2004) Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA. Appl. Geochem., v.19, p.359-377. https://doi.org/10.1016/S0883-2927(03)00132-X
- Johnson, T.M. and DePaolo, D.J. (1994) Interpretation of isotopic data in groundwater-rock systems: model development and application to Sr isotope data from Yucca Mountain. Water Res. Res., v.30, p.1571-1587. https://doi.org/10.1029/94WR00157
-
Klaus, J.S., Hansen, B.T. and Baupeng, S. (2007)
$^{87}Sr$ /86Sr ratio: a natural tracer to monitor groundwater flow paths during artificial recharge in the Bangkok area, Thailand. Hydrogeol. J., v.15, p.745-758. https://doi.org/10.1007/s10040-007-0175-z -
Lee, S.G., Kim, T-K., Lee, J-S., Lee, T., Cho, B.W. and Koh, H. (2008) Geochemical implication of
$^{87}Sr/^{86}Sr$ ratio of high-temperature deep groundwater in a fractured granite aquifer, Geochemical J., v.42, p.429-441. https://doi.org/10.2343/geochemj.42.429 - Lee, S.G., Nakamura, T., Kim, T-K., Ohta, T., Kim, H.C. and Lee, T. (2009) Geochemical Significance of 14C Age from the Dongrae Hot Spring Water. Korea Soc. Econ. Environ. Geol., v.42, p.541-548.
- McNutt, R.H. (2000). Strontium Isotopes. In: Cook, P.G. and Herczeg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology. Kluwer Academic, Norwell, MA 02061, p.233-260.
-
McNutt, R. H., Frape, S.K., Fritz, P., Jones, M.G. and MacDonald, I.M. (1990) The
$^{87}Sr/^{86}Sr$ values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim. Cosmochim. Acta, v.54, p.205-215. https://doi.org/10.1016/0016-7037(90)90208-3 - Peterman, Z.E. and Stuckless, J.S. (1992) Application of strontium and other radiogenic tracer isotopes to paleohydrogic studies. In: Paleohydrogeological Methods and Their Applications. Proc. NEA Workshop, p. 59-84.
- Seimbille, F., Zuddas, P. and Michard, G. (1998) Granite-hydrothermal interaction: A simultaneous estimation of the mineral dissolution rate based on the isotopic doping technique. Earth and Planetary Science Letters, v.157, p.183-191. https://doi.org/10.1016/S0012-821X(98)00026-0
- Steiger, R.H. and Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett., v.36, p.359-362. https://doi.org/10.1016/0012-821X(77)90060-7
- White, A.F., Blum, A.E., Bullen, T.D., Vivit, D.V., Schulz, M.C. and Fitzpatrick, J. (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta, v.63, p.3277-3291. https://doi.org/10.1016/S0016-7037(99)00250-1
- Zuddas, P., Seimbille, F. and Michard, G. (1995) Granitefluid interaction at near-equilibrium conditions: Experimental and theoretical constraints from Sr contents and isotopic ratios. Chemical Geology, v.121, p.145-154. https://doi.org/10.1016/0009-2541(94)00159-6