Preliminary Experimental Result for Clarifying Sr Isotope Behaviour of Water due to Water-Rock Interaction

물-암석반응에 따른 물에서의 Sr동위원소의 거동에 대한 예비실험결과

  • Lee, Seung-Gu (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jeong-Chan (Earth and Environment Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승구 (한국지질자원연구원 국토지질연구본부) ;
  • 김정찬 (한국지질자원연구원 지구환경연구본부)
  • Received : 2010.02.09
  • Accepted : 2010.06.05
  • Published : 2010.06.28

Abstract

A batch experiment was carried out to investigate a variation of Sr concentration and $^{87}Sr/^{86}Sr$ ratio in the solution by water-rock interaction. The experiments were conducted at room temperature using two kinds of granites (biotite granite and garnet-bearing granite), de-ionized water. surface water. Water/rock ratio was 1:1. For comparison, we also performed another experiment under water/rock condition of 10:1. Then, the concentration of the cations and anions in the solutions showed severe variation during water/rock interaction. However, after sometime, the $^{87}Sr/^{86}Sr$ ratio of the solution moved to the $^{87}Sr/^{86}Sr$ ratio of the rocks and showed relatively constant value. This suggests that the $^{87}Sr/^{86}Sr$ ratio between water and rock becomes to be stable faster than the elemental equilibration of the element in the solution, and is not affected by interaction condition. Therefore, $^{87}Sr/^{86}Sr$ ratio of the groundwater may be useful in calculating the mixing ratio between different aquifer.

물-암석 반응에 따른 물속의 Sr의 농도와 $^{87}Sr/^{86}Sr$ 비의 변화를 조사하기위해 실온에서의 회분식 실험(batch experiment)을 수행하였다. 실험방법은 기원이 서로 다른 2종류 화강암(강화 석모도 흑운모 화강암과 포천 석류석 화강암), 증류수, 지표수를 사용하여 암석을 증류수 및 지표수와 1:1의 비율로 각각 반응시킨 후의 물속의 양이온 및 음이온의 농도변화 및 물속의 $^{87}Sr/^{86}Sr$ 비를 측정하였다. 그리고 암석과 지표수의 경우, 혼합비의 차이에 의한 비교를 위해 암석과 지표수의 비율을 1:10으로 하여 반응시킨 후의 물속의 양이온과 양이온의 농도변화 및 $^{87}Sr/^{86}Sr$ 비를 측정하였다. 연구결과에 의하면, 물속의 용존성분의 함량은 초기 3-4개월간은 증가하였지만, 1년간 방치하여 놓은 시료에서는 함량이 현저하게 줄어들었다. 반면에 물속의 $^{87}Sr/^{86}Sr$ 비는 시간의 경과와 더불어 암석의 $^{87}Sr/^{86}Sr$ 비로 이동해가면서 비교적 안정되는 경향을 보여주었다. 이는 물-암석반응에 의한 물속의 $^{87}Sr/^{86}Sr$ 비는 거의 거의 평형에 도달한 이후에는 Sr 함량이나 기타 용존이온들보다 쉽게 안정됨을 지시해주는 것으로 볼 수 있다. 이 연구결과는 서로 다른 대수층에 분포하는 지하수의 연계성 혹은 혼합비를 계산하는데 있어서 $^{87}Sr/^{86}Sr$ 비가 유용하게 활용되어 질 수 있음을 지시해준다.

Keywords

References

  1. Bullen, T.D., Krabbenhoft, D.P. and Kendall, C. (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta, v.60, p.1807-1822. https://doi.org/10.1016/0016-7037(96)00052-X
  2. Edmunds, W.M., Kay, R.L.F., Miles, D.L. and Cook, J.M. (1987) The evolution of saline and thermal groundwaters in the Carmenellis granite. Mineralogical Magagine, v.48, p.407-424.
  3. Frost, C.D., Pearson, B.N., Ogle, K.M., Heffern, E.L. and Lyman, R.M. (2002) Sr isotopic tracing of aquifer interactions in an area of accelerating coal-bead methane production. Geology, v.30, p.923-926. https://doi.org/10.1130/0091-7613(2002)030<0923:SITOAI>2.0.CO;2
  4. Gosselin, D.C., Harvey, F.E., Frost, C., Stotler, R. and Macfarlane, P.A. (2004) Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA. Appl. Geochem., v.19, p.359-377. https://doi.org/10.1016/S0883-2927(03)00132-X
  5. Johnson, T.M. and DePaolo, D.J. (1994) Interpretation of isotopic data in groundwater-rock systems: model development and application to Sr isotope data from Yucca Mountain. Water Res. Res., v.30, p.1571-1587. https://doi.org/10.1029/94WR00157
  6. Klaus, J.S., Hansen, B.T. and Baupeng, S. (2007) $^{87}Sr$/86Sr ratio: a natural tracer to monitor groundwater flow paths during artificial recharge in the Bangkok area, Thailand. Hydrogeol. J., v.15, p.745-758. https://doi.org/10.1007/s10040-007-0175-z
  7. Lee, S.G., Kim, T-K., Lee, J-S., Lee, T., Cho, B.W. and Koh, H. (2008) Geochemical implication of $^{87}Sr/^{86}Sr$ ratio of high-temperature deep groundwater in a fractured granite aquifer, Geochemical J., v.42, p.429-441. https://doi.org/10.2343/geochemj.42.429
  8. Lee, S.G., Nakamura, T., Kim, T-K., Ohta, T., Kim, H.C. and Lee, T. (2009) Geochemical Significance of 14C Age from the Dongrae Hot Spring Water. Korea Soc. Econ. Environ. Geol., v.42, p.541-548.
  9. McNutt, R.H. (2000). Strontium Isotopes. In: Cook, P.G. and Herczeg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology. Kluwer Academic, Norwell, MA 02061, p.233-260.
  10. McNutt, R. H., Frape, S.K., Fritz, P., Jones, M.G. and MacDonald, I.M. (1990) The $^{87}Sr/^{86}Sr$ values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim. Cosmochim. Acta, v.54, p.205-215. https://doi.org/10.1016/0016-7037(90)90208-3
  11. Peterman, Z.E. and Stuckless, J.S. (1992) Application of strontium and other radiogenic tracer isotopes to paleohydrogic studies. In: Paleohydrogeological Methods and Their Applications. Proc. NEA Workshop, p. 59-84.
  12. Seimbille, F., Zuddas, P. and Michard, G. (1998) Granite-hydrothermal interaction: A simultaneous estimation of the mineral dissolution rate based on the isotopic doping technique. Earth and Planetary Science Letters, v.157, p.183-191. https://doi.org/10.1016/S0012-821X(98)00026-0
  13. Steiger, R.H. and Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett., v.36, p.359-362. https://doi.org/10.1016/0012-821X(77)90060-7
  14. White, A.F., Blum, A.E., Bullen, T.D., Vivit, D.V., Schulz, M.C. and Fitzpatrick, J. (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta, v.63, p.3277-3291. https://doi.org/10.1016/S0016-7037(99)00250-1
  15. Zuddas, P., Seimbille, F. and Michard, G. (1995) Granitefluid interaction at near-equilibrium conditions: Experimental and theoretical constraints from Sr contents and isotopic ratios. Chemical Geology, v.121, p.145-154. https://doi.org/10.1016/0009-2541(94)00159-6