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Abstract 
 

Multiple object association is an important capability in visual surveillance system with 
multiple cameras. In this paper, we introduce locally initiating line-based object association 
with the parallel projection camera model, which can be applicable to the situation without the 
common (ground) plane. The parallel projection camera model supports the camera movement 
(i.e., panning, tilting and zooming) by using the simple table based compensation for non-ideal 
camera parameters. We propose the threshold distance based homographic line generation 
algorithm. This takes account of uncertain parameters such as transformation error, height 
uncertainty of objects and synchronization issue between cameras. Thus, the proposed 
algorithm associates multiple objects on demand in the surveillance system where the camera 
movement dynamically changes. We verify the proposed method with actual image frames. 
Finally, we discuss the strategy to improve the association performance by using the temporal 
and spatial redundancy. 
 
 
Keywords: Multiple object association, parallel projection model, homographic line, 
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1. Introduction 

The multiple cameras based surveillance system is one of the most interesting research areas 
in recent years [1][2][3][4][5][4][7][8][9][10][11][12][13]. The purpose of the system is to 
identify and track objects in the surveillance area. When only the single camera is used for 
tracking, the performance is affected by the problems from the limited view such as occlusion 
and overlapping. On the other hand, the multiple cameras can provide the redundant view to 
resolve these problems. When the view of one camera is interfered with the obstacle or the 
object, the other camera may observe the tracked objects. However, the multiple cameras 
based surveillance system also has other problems such as the object handover between 
cameras and the correspondence between cameras. 

When multiple cameras operate collaboratively, the detected targets in multiple cameras 
should be associated for the consistent and reliable tracking. The various methods are 
investigated for multiple objects association. In feature based matching method, the features 
such as shape, motion or color are used to find the corresponding targets [6][7][9][10][11]. 
However, these methods do not guarantee the association performance where objects have 
similar features. Some authors use both geometric information and visual information to find 
correspondence between cameras [12][13]. Also, there is the approach that uses the multiple 
features at the same time [8]. The common problem for the feature-based methods is to utilize 
the probabilistic approach. This may cause the false association and the tracking becomes 
unreliable. When the geometry information is available, the globally defined homographic 
lines are used to find the corresponding targets [4][5]. However, this approach requires the 
camera calibration or the training process before the system operates. Moreover, the 
calibration of surrounding is necessary whenever the camera movement changes. 

A reliable association mechanism is necessary for maintaining the consistent tracking 
information in the large scale multiple cameras environment. The association needs to be 
performed whenever the system requires to establish or confirm the object association. Also, 
the system should support the dynamic change of the camera configuration for broadening the 
effective tracking coverage. However, the conventional camera model requires the calibration 
whenever the camera configuration changes for accuracy. This is not appropriate for the 
automatic surveillance where the change of camera configuration frequently occurs. Therefore, 
the large scale tracking system requires the association method supporting the flexible camera 
configuration on demand. 

In this paper, the locally initiating line-based object association method is presented so that 
association is established on demand. In order to avoid the calibration whenever the camera 
configuration changes, the parallel projection model is used for generating and transforming a 
homographic line [14][15]. We investigate plausible non-ideal parameters (i.e, transformation 
error, height uncertainty and asynchronous problem) affecting the association performance. 
With this analysis, the threshold distance between the detected targets is defined to indicate the 
effectiveness of a locally generated homographic line on the other cameras. The threshold 
distance based line generation algorithm is presented for multiple objects association. We 
verify the proposed method with actual image frames. Finally, we discuss the strategy to 
improve the association performance by using the temporal and spatial redundancy. 

The remainder of this paper has 4 sections. In Section 2, we present overview of the 
application model of visual surveillance system with multiple cameras. Section 3 presents an 



360                             Cho et al.: Locally Initiating Line-Based Object Association in Large Scale Multiple Cameras Environment 

association method using local initiated homographic lines and investigates the non-ideal 
parameters affecting the association. In Section 4, we verify the proposed method with the 
actual image frames and discuss the strategy to improve the association performance by using 
the temporal and spatial redundancy. Finally, our contribution is summarized along with 
future work in Section 5. 

2. Application Model and Problem Description 

2.1 Application Model 
When more than two cameras detect objects, the system obtains the redundant information. 
The benefit of multiple cameras is to complement each other by using the redundancy. When 
multiple cameras are used for the surveillance, it improves the occlusion situation arisen in the 
single camera and broadens the field of view of tracking. In order to consistently track objects, 
it is critical to find corresponding targets among cameras (i.e., multiple objects association 
among multiple cameras). Currently, the human operator analyzes and maintains the 
information. However, the efficiency and accuracy are restricted by the number of cameras. 
Thus, the association method supporting multiple cameras is required for the automated 
surveillance system. 

The aim of the proposed method is to support the situation that the common ground plane 
may not be shown on all the cameras and association targets are the faces of objects. The 
conventional association methods construct fundamental matrix or homography matrix with 
the predetermined corresponding points or known references. In a normal situation, the ground 
plane is usually shown to all the cameras and the homography matrix is easily constructed on 
the ground plane. Once a homography matrix is constructed on the common (ground) plane, 
the correspondence of objects can be easily found by transforming points with the 
homography matrix. However, it is not always guaranteed that the common plane is shown to 
all the cameras in the surveillance system. Even though they share the common plane, it is 
difficult for the system to automatically find corresponding points for constructing the 
homography matrix. Thus, the association methods using the fundamental matrix or 
homography matrix are not appropriate for an autonomous surveillance system with 
dynamically moving cameras. 

2.2 Related Work 

There are two approaches to find the corresponding targets among multiple cameras. One is 
feature based and another is geometric based approaches. Researchers have used various 
features such as color, histogram, height and motion for feature based approaches. However, 
all of them are not the unique characteristics for objects. Although some features are used 
together to improve accuracy, they still rely on the probabilistic approach. Their performance 
is severely affected by objects having the similar features [6][10][11]. For instance, when 
people wear the similar uniform or the cloth which has the different color at the front and the 
back, it is hard to construct the color-based information and associate objects. Also, the 
accurate feature extraction requires the prohibitively large computation. In [16], the principal 
axis of a target is used for finding correspondences. Although this can be more reliable than 
other features, the decision may be confused when the floor is shown in one camera and not in 
another camera. 

In the geometric based method, some authors try to align two different images by using the 
geometric transformation between cameras [17][18]. Although the known geometric 
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relationship between two different cameras facilitate an association process finding the 
correspondence of objects, a system requires known reference points between two different 
cameras to contruct the geometric relationship. This kind of the pre-construction process can 
restrict the camera movement in a large scale multiple camera environment. Also, the 
performance is only ensured when disparity between the geometric relationship of cameras is 
small. Another method is to use the boundary of the field of view (FOV) of cameras on the 
ground plane [4]. The boundary information of FOVs are projected onto the image of the other 
cameras. The object association is established when corresponding targets cross the same 
boundary on each camera. Although this method finds the correspondence of objects 
effectively, there are several limitations. The association is established only when objects 
cross over the boundaries of FOVs. This cannot support the re-association right after 
association failures due to miss detection or occlusion. Also, when a camera pans or tilts, the 
system needs the calibration or training to generate the FOV lines on the other cameras. 
Another method is to use the epipole line with the relationship between cameras [19]. A point 
on a camera is in a line with the camera’s focal point. This line is shown in the other camera by 
using the camera geometry. If the epipole line from an object in a camera passes the object in 
other camera, the correspondence between detected targets is established. However, this 
method highly depends on the camera geometry and is sensitive to the accuracy of the camera 
calibration. 

The fundamental problem for objects association with these approaches is to restrict the 
camera movement because of the training or the calibration. They usually use the perspective 
projection model for the transformation and alignment. Cameras should be calibrated to 
decrease the non-ideal error before the system starts in the application. However, the 
calibration process usually needs the planar and regular target as reference, which is hard to 
obtain in real time tracking applications [20][21][22][23][24]. That is why the calibration is 
performed at the initial system stage with the known reference. The camera movement is also 
restricted to avoid the calibration while the tracking system operates. Moreover, in an 
autonomous surveillance system, the proper camera movement for the object tracking is 
necessary to secure the effective view and to manage the resource. 

2.3 Approach Overview 
In the proposed approach, the parallel projection model based transformation technique is 
applied for the object association [14]. At the initial system stage, the zoom factor and the 
non-ideal parameter compensation table are measured. Since the zoom factor table is 
independent of the camera configurations (i.e., panning, tilting and zooming), the camera does 
not require the calibration whenever the camera changes the movement or location. The object 
association is locally initiated by generating a homographic line on each target. Locally 
generated homographic lines are exchanged among different cameras to find intersections 
with corresponding targets. The detailed association process with locally generated 
homographic lines is explained in the following section. 

3. Multiple Objects Association 

3.1 Local Line-based Association 
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Fig. 1. Illustration of the homographic lines based association method with the flow chart 

 
Object association is initiated by locally generating homographic lines on detected targets in 

each camera. The locally generated homographic lines are exchanged among different 
cameras to find intersections with targets through a global plane such as the ground plane or 
the reference plane. Fig. 1 illustrates the homographic lines based association method using 
two cameras. k

iL  denotes a locally generated homographic line on target k
iT , a detected target 

of object i  on camera kC . k
iGL  is a transformed homographic line on a global plane and 

k
iSL  is a projected homographic line from k

iGL  on the other camera lC . In the figure, solid 
lines are locally generated homographic lines and dotted lines are projected homographic lines. 
The association between targets is established when their projected homographic lines 
intersect with corresponding targets each other. For example, 1

1T  intersects with a projected 
homographic line generated from 2

1T  and vice versa, and targets { 1
1T , 2

1T } and { 1
2T , 2

2T } are  
associated respectively.  
 

 
Fig. 2. Illustration of key parameters in locally initiating homographic lines based association method 
 

The association establishment of locally generating homographic lines based association is 
determined by the correct intersection with the corresponding targets. However, a projected 
homographic line can be deviated from the centroid of a target because of an inaccurate global 
plane and synchronization issues between cameras. The accuracy problem of a global plane 
becomes significant when the common ground plane may not be shown to all the cameras and 
the faces of objects are extracted [25][26] as association targets. Because the heights of 
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association targets are not known to a system, the global plane with the average height of 
targets is used for the transformation and the projection of homographic lines it can create the 
deviation problem. In order to ensure the correct intersection with the corresponding target, we 
introduce the tolerable region around a target with the size min,

k
ir  as shown in Fig. 2. Radius 

k
ismin,  denotes the adjusted radius of the tolerable region for a projected homographic line 

deviated by an inaccurate global plane and synchronization issues between cameras. The circle 
with k

ismin,  is called as an association circle throughout the paper. In the following section, we 
identify non-ideal parameters causing the deviation problem and how to determine the size of 

k
ismin, . 

3.2 Non-ideal Parameters in Line Generation 
The size of an association circle affects the association performance of the proposed method.  
While it ensures the correct intersection of homographic lines against the non-ideal parameters, 
the large size of an association circle may increase the possibility that the target intersects with 
homographic lines generated from irrelevant detected targets. Therefore, the appropriate size 
of an association circle is important in terms of the association performance. Since the size of 
an association circle depends on the effect of the non-ideal parameters among multiple 
cameras, we predetermine the size of an association circle by considering all the possible 
camera movements. In the following subsections, we show the effect of the non-ideal 
parameters to determine the size of an association circle. While camera 1C  is fixed at 1P (3m, 

0m, 3m), camera 2C  is considered to be three positions (i.e., 2P (6m, 3m, 3m), 3P (3m, 6m, 

3m) and 4P (0m, 3m, 3m)) as varying the tilting and panning angle also. 
1) Effect of the Transformation Error: When the homographic line is generated, the image 

coordinates are transformed to the global coordinates by using the parallel projection model as 
shown in Fig. 3. This model uses the table based error compensation to support the dynamic 
camera configuration instead of using the known reference points. Since the image is affected 
by the lens distortion or the camera configurations (panning, tilting, and zooming), this 
deteriorates the transformation accuracy. This can cause the problem that a homographic line 
does not intersect with the detected target. 
 

 
Fig. 3. Illustration of the transformation error caused by the camera nonlinearity 
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Fig. 4 shows the maximum transformation error of the generated homographic line on 
camera 2C . For simplicity, the zoom factors of horizontal axis and vertical axis of the image 
are set to 1 and 1.7 respectively. Camera 1C  is fixed at 1P  and the panning angle of camera 

2C  varies −10° to 10° and the tilting angle varies 45° to 60° at each position. The 
homographic lines from camera 1C are transformed onto the ground and the global lines are 
projected onto camera 2C . Among the projected lines, the maximum pixel distance from the 
ideally projected line is shown in y-axis. When the homographic line is transformed without 
the compensation for the lens non-linearity, the pixel distance error is very larger than the 
homographic line with the compensation. The result shows that the pixel distance error is 
almost 1 pixel on the image when the lens non-linearity is compensated and the transformation 
error is negligible with the compensation. 
 

(a) Ttilting angle = 45° (b) Tilting angle =50° (c) Tilting angle = 55° 
Fig. 4. The transformation error on 2C according to the camera status (i.e., position, panning and tilting 

angle) 
 

2) Effect of the Height Uncertainty:  Since the faces of objects are association targets, the 
system does not know the height of the global plane accurately  where homographic lines are 
generated. Thus, the system uses the average height of objects for the global plane. The 
difference between the actual height and the average height of objects induces homographic 
lines to be shifted from the corresponding targets. hσ  denotes the amount of pixels to 
compensate for the shifted homographic lines due to height uncertainty. 

Fig. 5 shows how much the homographic line is shifted from the generated homographic 
line due to the height uncertainty. The effect of the height uncertainty is simulated similarly to 
the transformation error. The average height is assumed to be 1.6m. As varying the status of 
camera 2C  at each position with the height uncertainty, −0.1m ~ 0.1m, the maximum pixel 
distance error is measured. The value of y-axis indicates the maximum number of pixels 
between the projected homographic line with the known height and the projected homographic 
line with the height uncertainty. Since the effect of the height uncertainty is measured by 
transforming homographic lines, it also considers the effect of the transformation error. The 
result indicates that the effect of the height uncertainty increases when the zoom factor is large 
on the other camera. This is because an object is viewed more closely to a camera when the 
zoom factor is larger.  

3) Synchronization Issue: Another problem in object association is synchronization issue 
among cameras. Suppose N cameras process P frames per second. Then, the maximum 
synchronization error is 1/P second (i.e., out of synchronization by 1 frame) because they 
sample an image at the same rate. In Fig. 6, camera 2C  is delayed by 1 frame two cameras are 
placed in the perpendicular way for the maximum effect of the synchronization issue. Object 
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2O  moves in the diagonal way to the optical axis of  camera 2C . Since the captured views of 
cameras are different from each other, the projected homographic line does not intersect with 
the detected targets of object 2O . 

 

(a) When the zoom factor of 2C  
is 0.2 smaller than that of 1C  

(b) When the zoom factors of 
two cameras are the same 

(c) When the zoom factor of 2C  
is 0.2 larger than that of 1C  

 
Fig. 5. The effect of the height uncertainty on the other camera according to the camera status (i.e., 

position, panning and tilting angle, zoom factor) 
 

 
Fig. 6. Illustration of association problem in asynchronous image frames. 

 
Fig. 7 shows the effect of the synchronization problem. fv  represents the object speed per 

the image sampling time. It is assumed that the maximum frame delay between cameras 1C  
and 2C  is 1 frame as an object moves in the perpendicular way to the optical axis of 1C  at 
speed fv . The homographic line is generated from the delayed image of camera 1C  to the 

image of camera 2C . The maximum pixel difference error between the homographic lines 
from the delayed image and the detected target in camera 2C is measured. As the object moves 
fast and closely to camera 2C , the pixel error increases. sσ  is defined as the maximum pixel 
distance error caused by the synchronization issue depending on the applications (i.e., object 
speed and the camera position). 
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Fig. 7. The effect of the synchronization problem depending on the distance between the object and 

camera 
 

3.3 Parameters Affecting Association Performance 
Since the effect of transformation is included in the height uncertainty, the required minimum 
size of an association circle is represented as, 
 

,2/)2max(min shs σσ +≈                                                         (1) 
 
where hσ  and sσ  are measured in all the possible camera positions for the application. Based 

on this, the system increases the box size to mins  so that a projected homographic line 
intersects with the detected box. On the other hand, the increased size of the detected target 
also increases the case that an object is intersected with multiple homographic lines. The 
proposed algorithm is affected by this case and the increased size may decrease the association 
performance. Moreover, the association condition is not satisfied when a homographic line 
intersects with more than two same objects on both cameras. Thus, the parameter indicating 
the effectiveness of the homographic line should be def ined. 

The threshold distance is the minimum distance between targets, which is required to 
generate the effective vertical homographic lines on the other cameras. Fig. 8 illustrates the 
threshold distance in each camera. The system knows which vertical homographic line is 
generated from which object in the local camera. Hence, although generated vertical 
homographic lines intersect with two detected targets in the local camera, it does not affect the 
association process. However, when the projected homographic lines from them intersect with 
two detected targets in the other camera, the system cannot determine the corresponding target. 
The one way to expect this is to use the globally defined threshold distance, thd , which is 
represented as 
 

),2max( shthd σσ +≈                                                         (2) 
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where the maximum errors of the non-ideal parameters are considered. When the homographic 
lines are generated in one camera, the separation of the transformed lines from them is 
anticipated with thd  in the other cameras. However, we need to consider that thd  is the 
reference value obtained with the predefined zoom factor. 
 

 
(a) The view of camera 1C  

 
(b) The view of camera 2C  

Fig. 8. The view of each camera with thd  when the homographic line is generated from camera 1C  
 

Fig. 9 illustrates the size of detected target compared with thd  and the zoom factor of the 
other camera. thd  is determined by (2) based on the simulation with the predefined zoom 
factor for the non-ideal parameters. The size of most detected targets is smaller than thd  with 
the height uncertainty. Thus, the box size of them needs to be expanded so that the non-ideal 
factors can be compensated. However, thd  decreases when the height is known because the 
effect of the height uncertainty is negligible. Moreover, if the other cameras use the different 
zoom factor from the camera where a homographic line is generated, thd  also changes in 
proportion to the zoom factor. 

 
Fig. 9. Relationship between the size of the detected target and thd  

 
When thd  is considered for the line generation, the system has the case that two objects are 

too close to be associated with the vertical homographic lines as shown in Fig. 10. If d  is 
smaller than thd , the vertical homographic line is not effective as shown in Fig. 11. Hence we 
introduce a slant homographic line. As generating a slant homographic line, the distance 
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between two homographic lines satisfies with the separation thd . The angle θ  is the slope of 
the homographic line. In order to obtain the new distance between the homographic lines, we 
use the distance between a point and a line. For example, the homographic line passing the 
center of object 1O  is defined by 

.0)tan()tan( 11 =+−− yxyx θθ                                               (3) 
The distance between the line and the center of 2O  is calculated by 

.|
1))(tan(

)tan()tan(|' 2
1122

+
+−−

=
θ

θθ yxyxd                                               (4) 

The angle θ  is chosen as finding thdd ≥' . In order to decrease the number of comparison 
cases, the system can choose θ  among the limited angle candidates (i.e., 0°, 45° and 135°). 

 
Fig. 10. Illustration of the case that the vertical homographic line is not effective 

 

 
(a) The view of camera 1C  

 
(b) The view of camera 2C  

Fig. 11. The view of each camera when the slant homographic line is generated from camera 1C  
 

1) Vertical Line based Association: This association method uses only the vertically 
generated homographic lines. Each camera generates the vertical homographic lines on the 
detected target considering the threshold distance. If the homographic line is not satisfied with 
the threshold distance, the homographic line is not used for object association. As shown in 
Fig. 12, all the cameras generate homographic lines on detected targets. However, the 
homographic lines generated by camera 2C do not satisfy the threshold distance. The distance 
between 2

1L  and 2
2L  is smaller than thd . Thus, they are not effective anymore and only 

cameras 1C and 3C  associate the corresponding targets. 
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Fig. 12. Illustration of object association by the vertical homographic lines 

 
2) Slant Line based Association: When slant homographic lines are used for object 

association, there are two methods to generate them. One is the locally selected line and 
another is the globally selected line. In the locally selected line method, the angle θ is chosen 
when the homographic line is generated. Fig. 13 shows the example how the slant 
homographic line is applied to object association. In camera 2C  which does not participate in 
object association with the vertical homographic lines, a slant homographic line is generated 
on each detected target. 

 

 
Fig. 13. Illustration of object association by the possible slant homographic lines 

In the figure, d  of lines generated by 2C  is larger than thd . Hence they are still effective 

and camera 2C  can also participate in object association. In the second approach, all the kinds 
of effective homographic lines including the vertical lines are generated and transferred to the 
system. The system determines which lines are used for association after testing the threshold 
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distance in all the cameras. Although this can choose the best homographic lines for object 
association, this requires the large amount of computation for comparison with the threshold 
distance. 

Algorithm 1 explains the line generation method based on thd . The purpose of this 
algorithm is to find the homographic lines with θ having the maximum separation in other 
cameras so that the association performance increases. First, the system determines the set of 
θs to be tested. As increasing the number of elements in the set, the comparison cases increase. 
Then, the system calculates the minimum distances when the homographic line is generated  
 

Algorithm 1: the line generation algorithm with thd  

Input : thd , 

Coordinates of detected objects with the expanded box size from each camera 

for k = 1 to K  do 

Calculate min 
o90d  between detected objects at 

kC  

if thdd <
o90  then 

find max 
θd  satisfying 

θd  ≥ thd  

end 

if 
θd  is found then 

for i = 1 to I do 

if A detected target 
k

iT  has at least thd  of separation then 

Generate homographic lines with θ  on detected objects 
end 

end 
end 

end 

4. Simulation and Analysis 

4.1 Simulation Setup 
Fig. 14 shows object trajectories and camera placements for analyzing the proposed 
association algorithm. Camera 1C  is placed at (x = 3.57m, y = 0.05m, z = 2.24m) with tilting 
angle 73°and panning angle 0°and camera 2C  is placed at (x = 0.05m, y = 2.97m, z = 2.34m) 
with tilting angle 68° and panning angle 0°. The total number of frames is 45 and object 3O  is 

shown to both cameras after frame 23. The height of object 1O  is 1.75m, the height of object 

2O  is 1.87m, and the height of object 3O  is 1.72m. The average height of the objects is 1.78m. 
Since a target height is considered to be the center of an object face in height estimation, the 
target height is shorter than the real height of an object. Thus, z = 1.7m is used as an initial 
global plane where homographic lines are transformed. If an object height is estimated, an 
object has its own global plane of an estimated object height. 60 pixels are used for the initial 
value of sh σσ + .  
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Fig. 14. Illustration of our simulation setup showing objects trajectories and camera placements (Each 
square denotes the starting position of each object) with each θ. Finally, the system selects θ which has 
the maximum distance among the minimum distances. Then, the system tests if each object has at least 

thd  of the separation with other objects. If this is satisfied, the system generates the homographic line 
with θ. 

4.2 Performance with Constant Radius of Association Circle 
Fig. 15 shows snapshots for objects association with a constant radius. The system generates 
homographic lines on images only when the distance between targets is satisfied with the 
threshold. At frame 5, targets are not associated because transformed homographic lines 
intersect with multiple targets. This indicates that the threshold does not always lead to the 
correct decision for generating homographic lines. However, if the distance between targets is 
smaller than the threshold, the generated homographic lines are even less effective for objects 
association. After frame 5, targets between two images are associated by locally initiating 
homographic lines. As shown in the figure, an adjusted region size mins of each target is 
constant. 
 

 
Fig. 15. Image snapshots of object association with constant threshold based association algorithm at 

frame 5 ~ 8 (The upper images are captured by camera 1C  and the lower images are captured by 
camera 2C . Blue rectangles of targets indicate associated targets; white solid lines, locally initiated 
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homographic lines; and white dotted lines, projected homographic lines from locally initiated 
homographic lines). 

 
Moreover, the simulation shows that projected homographic lines deviate from the centroid 

of targets because of the non-ideal parameters. The association status of each object is shown 
in Fig. 16. 
 

 
Fig. 16. Simulation result of the association status of each object with the constant radius based 

association algorithm 
 

4.3 Association Performance Improvement Using Redundancies 
This section discusses the strategy to improve the association performance by minimizing the 
adjusted radius of an association circle after targets are associated between cameras. The first 
non-ideal parameter to be compensated for is the height uncertainty of targets. The effect of 
the height uncertainty is maximized when there is a significant discrepancy between actual 
height and average height of a target. If we can estimate a target height within a certain range, 
it is not necessary to consider significant uncertainty. A target can be localized in 3-D through 
finding the intersection of projected lines from targets in cameras to a ground [16]. However, 
the intersection of the projected lines may not exist because targets are detected in different 
views. Hence, we utilize the shortest line between two projected lines. 

A corresponding point ip  in each camera is projected onto the global ground plane (z = 0) 
using 'ii Cpp =  where C is a known camera matrix and 'ip  denotes a transformed point on a 
ground plane. Ideally, constructed lines between corresponding points and transformed points 
should intersect with each other if the centroid of targets is the same position of an object in 
3-D. However, this is not always guaranteed because the centroid of targets can be deviated by 
detection algorithms. Thus, we obtain a line which has the shortest distance between the 
constructed lines. Then, an object position is estimated using the middle point between two 
points that form the shortest line between constructed two lines. 

The average height of targets (i.e., centroid of detected faces of objects) is set to be 1.7m. 
The target height of object 1O  is 1.65m, the target height of object 2O  is 1.73m, and the target 
height of object 3O  is 1.6m. Fig. 17 shows estimated heights of three objects assuming that 
their corresponding targets are known. Estimated heights can be deviated from an actual target 
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height because targets are detected in the different views of cameras. However, estimated 
heights converge on actual target heights.  
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Object O2

Object O3

Not shown both cameras  
Fig. 17. Estimated target heights of objects by the shortest distance between two lines after 

corresponding targets are found (a blue solid line is the average height of targets) 
 

Fig. 18 shows how many pixels homographic lines are deviated from corresponding targets 
when estimated heights are utilized for the generation of homographic lines. The initial value 
of height uncertainty hσ  is set to be 37 pixels assuming that the degree of height uncertainty is 
0.1m. When an object is not shown on both cameras, the initial value is used for the number of 
deviated pixels. The result indicates that estimated heights alleviate the deviation of 
homographic lines.  
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(a) Targets in camera 

1C  
 

(b) Targets in camera 2C  
   

Fig. 18. The number of deviated pixels from the centroid of targets when estimated heights are utilized 
to generate and transform homographic lines 

 
Since synchronization issues are caused by the physical network delay, it is difficult to 

correct the effect of synchronization issues. However, sσ  can be optimally selected by using 
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information such as an object speed and a distance between an object and a camera. In order to 
estimate sσ  for the next frame, the global position of an object needs to be predicted. The next 
position is estimated based on the previous position and velocity. The velocity of an object is 
estimated based on the positions for at least two consecutive frames. The velocity of object iO  
at time n  (i.e., , ,( ), ( )x i y iv n v n )

 
is obtained by 

),1()()(
),1()()(

,

,

−−=

−−=

nynynv
nxnxnv

iiiy

iiix
                                                    (5) 

where ))(),(( nynx ix  is a global position at time n . This assumes a constant velocity object 
model. Since the sampling rate is usually higher than object velocity, the predicted position 
error by the incorrect object model is not significant. The object speed i

fv  of object iO  per a 
frame is also obtained by 

.2
,

2
, iyix

i
f vvv +=                                                     (6) 

Fig. 19 shows the estimated speeds of objects per a frame when the frame rate is 
8frames/sec (the maximum time difference between cameras is 0.125sec). The estimated 
speed is used to determine the optimal value for sσ  with the pre-constructed table 
representing the influence of the synchronization effect. 
 

 
Fig. 19. The estimated speeds of objects per a frame assuming that the frame rate is 8frames/sec (the 

maximum time difference between cameras is 0.125sec) 
 

Table 1 shows the example of constructed pixel error table by using the simulated data from 
Fig. 7. 2/fv  corresponds to the sampling period of Fig. 7 since the synchronization effect is 

measured with the average object speed 2m/s. lk
iD ,  denotes a distance between the position  of 

target k
iT  and camera lC . The table can be constructed in more detail for more subdivided 

selection. 
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Table 1. Constructed pixel error table for synchronization effect according to Fig. 7 

2/fv  3, <lk
iD  3, ≥lk

iD  

0.05 10 5 

0.1 22 12 

0.2 45 25 
 

Fig. 20 shows the variation of an adjusted radius smin as objects move around the 
surveillance region. The maximum object speed is slower than 0.2m/s in this simulation. Thus, 
22 pixels are used when the distance between an object and a camera is closer than 3m and 12 
pixels otherwise according to Table 1. The line “ sh σσ +  only” is the smallest smin that can be 
achieved by estimating the object height and compensating for the synchronization issue. 
However, it is not necessary to decrease smin smaller than the detected box size. Thus, the 
system uses the line “max( shbr σσ +, )” for the association process. The line “initial value of 

sh σσ + ” is a radius that the constant radius based method uses for the entire time. 
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(a) mins  of each target in C1 
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(b) mins  of each target in C2 

Fig. 20. The variation of mins of each object as a function of Time 
 

Fig. 21 shows the association status of each object when the adjusted radius based algorithm 
is used. The figure shows a prominent association improvement as compared with Fig. 16. A 
new object (i.e., object 3O ) or a failed object is also associated or recovered as time elapses. 

Fig. 22 compares the average association performance between the constant radius based 
association algorithm and the adjusted radius based association algorithm. An ideal situation 
indicates that heights of targets are known and cameras are synchronized. Although the 
proposed association algorithm outperforms the constant radius based association algorithm, 
the result indicates that homographic lines based association is not always the best solution. A 
system utilizes rather local tracking information to maintain association information when 
homographic lines cannot be guaranteed to distinctively intersect with targets. 
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Fig. 21. Improvement over Fig. 16 by adjusted radius based association algorithm 

 

(a) Based on constant radius 
 

(b) Based on adjusted radius 
Fig. 22. Simulation result of average association performance with constant radius based association 

and adjusted radius based association 

5. Conclusions 
In this paper, we showed a novel association method with local initiated homographic line for 
surveillance application with multiple cameras. This method is based on the parallel projection 
model to support the camera movement. We investigate the plausible parameters to affect the 
association performance. This information is used to define the threshold distance to indicate 
the effectiveness of the locally generated homographic line. We also discuss the strategy to 
improve the association performance using the temporal and spatial redundancies. 

Future extensions to this work will be to maintain association information when objects are 
densely populated. In the densely populated environment, there is a very high possibility that 
homographic lines are not effective due to closely detected targets. Then, association 
information can only be maintained with local tracking, and this may cause false or failed 
association. Abandoned unassociated targets seriously delay association establishment. Thus, 
association maintenance scheme with previously given association information is required to 
accurately and effectively maintain association information. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 3, June 2010                                                377 

References 
[1] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and 

behaviors,” IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews, 
vol. 34, no. 3, pp. 334-352, Aug. 2004. 

[2] A. Utsumi, H. Mori. J. Ohya, and M. Yachida, “Multiple-view-based tracking of multiple 
humans,” in Proc. of Int’l Conf. Pattern Recognition, pp.197-601, 1998. 

[3] S. L. Dockstader and A. M. Tekalp, “Multiple camera tracking of interacting and occluded human 
motion,” Proceedings of the IEEE, vol. 89, no. 10, pp. 1441-1455, Oct. 2001. 

[4] S. Khan and M. Shah, “Consistent labeling of tracked objects in multiple cameras with overlapping 
fields of view,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 
1355-1360, Oct. 2003. 

[5] S. Calderara, A. Prati, R. Vezzani, and R. Cucchiara, “Consistent labeling for multi-camera object 
tracking,” in Proc. of  Image Analysis and Processing (ICIAP), pp. 1206-1214, 2005. 

[6] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer, “Multi-camera multi-person 
tracking for easy living,” in Proc. of IEEE Int’l Workshop Visual Surveillance, Dublin, Ireland, pp. 
3-10, Jul. 2000. 

[7] J. Li, C.S. Chua, and Y.K. Ho, “Color based multiple people tracking,” in Proc. of IEEE Int’l Conf. 
on Control, Automation, Robotics and Vision, vol. 1, pp. 309-314, 2002. 

[8] Q. Cai and J. K. Aggarwal, “Tracking human motion using multiple cameras,” in Proc. of Int’l 
Conf. on Pattern Recognition ,Vienna, Austria, pp. 68-72, 1996. 

[9] Y. Caspi, D. Simakov and M. Irani, “Feature-based sequence-to-sequence matching,” 
International Journal of Computer Vision, pp. 53-64, 2006. 

[10] J. Orwell, P. Remagnino and G.A. Jones, “Multiple camera color tracking,” IEEE Int’l Workshop 
Visual Surveillance, pp. 14-24, Jun. 1999. 

[11] A. Mittal and L.S. Davis, “M2Tracker: A multi-view approach to segmenting and tracking people 
in a cluttered scene using region-based stereo,” in Proc. of European Conf. Computer Vision, pp. 
18-36, May 2002. 

[12] J. Kang, I. Cohen, and G. Medioni. “Continuous tracking within and across camera streams,” in 
Proc. of IEEE Int’l Conference on Computer Vision and Pattern Recognition, vo.1, pp.267-272, 
2003. 

[13] S. Chang and T.-H. Gong. “Tracking multiple people with a multi-camera system,” in Proc. of 
IEEE Workshop on Multi-Object Tracking, pp. 19-26, 2001.  

[14] S. H. Cho, S. Hong. W. Cho, “Homographic line generation and transformation technique for 
dynamic object association,” in Proc. of Int’l Workshop on Machine Learning for Signal 
Processing, pp. 273-278, Oct. 2008. 

[15] K. S. Park, J. Lee, M. Stanaćević, S. Hong and W. D. Cho, “Iterative object localization algorithm 
using visual images with a reference coordinate,” EURASIP Journal on Image and Video 
Processing, vol. 2008, Article ID 256896, July 2008. 

[16] W. Hu, M. Hu, X. Zhou, T. Tan, J. Lou and S. Maybank, “Principal axis-based correspondence 
between multiple cameras for people tracking,” IEEE Trans. on Pattern Analysis and Machine 
Intelligence, vol. 28, no. 4, pp. 663-671, Apr. 2006. 

[17] H. Tsutsui, J. Miura and Y. Shirai, “Optical flow-based person tracking by multiple cameras,” in 
Proc. of IEEE Conf. Multisensor Fusion and Integration in Intelligent Systems, pp. 91-96, Aug. 
2001. 

[18] A. Utsumi, H. Mori, J. Ohya and M. Yachida, “Multiple human tracking using multiple cameras,” 
in Proc. of IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 498-503, Apr. 1998. 

[19] J. Black and T. Ellis, “Multi camera image tracking,” Image and Vision Computing, vol. 24, pp. 
1256-1267, 2006. 

[20] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov. 2000. 

[21] L. Lucchese, “Geometric calibration of digital cameras through multi-view rectification,” Image 
and vision computing, vol. 23, no. 5, pp. 517-539, May 2005. 



378                             Cho et al.: Locally Initiating Line-Based Object Association in Large Scale Multiple Cameras Environment 

[22] J. Wang, F. Shi, J. Zhang and Y. Liu, “A new calibration model of camera lens distortion,” Pattern 
Recognition, vol. 41, no. 2, pp. 607- 615, Feb. 2008. 

[23] J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image 
correlation,” in Proc. of Conf. on Computer Vision and Pattern Recognition, pp. 1106-1112, 1997. 

[24] R. Hassanpour, Volkan Atalay, “Camera auto-calibration using a sequence of 2D images with 
small rotations,” Pattern Recognition Letters, vol. 25 pp. 989-997, 2004.  

[25] S. Z. Li and Z.Q. Zhang, “FloatBoost learning and statistical face detection,” IEEE Trans. on 
Patteran Analysis and Machine Intelligence, vol. 26. no. 9, pp. 1112-1123, Sep. 2004.  

[26] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer 
Vision, vol. 57, no. 2, pp. 137-154, May 2004. 

 
 
 
 
 

 

Shung Han Cho received B.E. (Summa Cum Laude) with specialization in 
Telecommunications from both the department of Electronics Engineering at Ajou 
University, Korea and the department of Electrical and Computer Engineering at Stony 
Brook University - SUNY, NY in 2006. He received M.S. in Electrical and Computer 
Engineering at Stony Brook University with Award of Honor in recognition of 
outstanding achievement and dedication in 2008. He is currently pursuing his Ph.D. 
degree in the department of Electrical and Computer Engineering at Stony Brook 
University.  He was a recipient for International Academic Exchange Program 
supported by Korea Research Foundation (KRF) in 2005. He was a member of Sensor 
Consortium for Security and Medical Sensor Systems sponsored by NSF Partnerships 
for Innovation from 2005 to 2006. His research interests include collaborative 
heterogeneous signal processing, distributed digital image processing and 
communication, networked robot navigation and communication, heterogeneous 
system modeling and evaluation.

 
 

 

 

Yunyoung Nam received B.S, M.S. and Ph.D. degree in computer engineering from 
Ajou University, Korea in 2001, 2003, and 2007 respectively. He was a research 
engineer in the Center of Excellence in Ubiquitous System from 2007 to 2009. He was a 
post-doctoral researcher at Stony Brook University in 2009, New York. He is currently 
a research professor in Ajou University in Korea. He also spent time as a visiting 
scholar at Center of Excellence for Wireless & Information Technology (CEWIT), 
Stony Brook University - State University of New York Stony Brook, New York. His 
research interests include multimedia database, ubiquitous computing, image 
processing, pattern recognition, context-awareness, conflict resolution, wearable 
computing, and intelligent video surveillance. 

 
 

 

 
 

Sangjin Hong received the B.S and M.S degrees in EECS from the University of 
California, Berkeley. He received his Ph.D in EECS from the University of Michigan, 
Ann Arbor. He is currently with the department of Electrical and Computer Engineering 
at Stony Brook University - State University of New York. Before joining Stony Brook 
University, he has worked at Ford Aerospace Corp. Computer Systems Division as a 
systems engineer. He also worked at Samsung Electronics in Korea as a technical 
consultant. His current research interests are in the areas of low power VLSI design of 
multimedia wireless communications and digital signal processing systems, 
reconfigurable SoC design and optimization, VLSI signal processing, and 
low-complexity digital circuits. Prof. Hong served on numerous Technical Program 
Committees for IEEE conferences. Prof. Hong is a Senior Member of IEEE. 

  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 3, June 2010                                                379 

 

Weduke Cho received the B.S. in 1981 from Sogang University in Seoul, South 
Korea, and his M.S. and Ph.D. from Korea Advanced Institute of Science and 
Technology (KAIST) in 1983 and 1987. He had many actual industrial experiences of 
large scaled national projects for LG Electronics(CDMA system, Speech Vocoder), 
KAITECH (HDTV System), and KETI (Smart DTV, Home Server, Internet Phone 
System, etc) during from 1987 to 2002. Currently he is a professor of department of 
Electronics Engineering College of Information Technology at Ajou University in 
Korea, Project Manager of “Ubiquitous computing and networking (UCN) project 
(www.ucn.re.kr)”, and president of ubiquitous convergence research institute (UCRi).  
His research interests included Smart Convergence Service System and Device Design 
for “Life-care” and “public-safety” applications on Ubiquitous Computing 
Environment of Smart Space, and System Architecture Design. Specifically, He is 
developing a human life-style pattern sensing system with life-log framework, smart 
bed, actively tracking system for moving target image on CCTV system. 

 
 


