DOI QR코드

DOI QR Code

3 차원 입방형 표면조도가 난류경계층에 미치는 영향

Turbulent Statistics of the Turbulent Boundary Layer over a Cube-Roughened Wall

  • 이재화 (한국과학기술원 기계공학과) ;
  • 성형진 (한국과학기술원 기계공학과)
  • Lee, Jae-Hwa (School of Mechanical Aerospace & Systems Engineering, KAIST) ;
  • Sung, Hyung-Jin (School of Mechanical Aerospace & Systems Engineering, KAIST)
  • 투고 : 2010.05.07
  • 심사 : 2010.08.11
  • 발행 : 2010.10.01

초록

3 차원 표면조도의 영향을 조사하기 위하여 규칙적으로 배열된 3 차원의 입방형 표면조도를 갖는 난류경계층을 직접수치모사하였다. 표면조도는 주 유동방향과 횡 방향으로 각각 8k 과 2k 의 주기를 갖도록 배열되었으며 표면조도의 크기 (k)는 입구 운동량 두께(${\theta}_{in}$)의 1.5 배이다. 주 유동 방향을 따라 공간 발달하는 3 차원 표면조도 위의 난류특성을 2 차원의 막대형표면조도에서의 결과와 비교하였다. 2 차원 표면조도와 마찬가지로 3 차원 표면조도의 경우에도 조도저층 뿐만 아니라 바깥영역에서 표면조도의 영향이 존재하였으며 이러한 결과는 주 유동 방향의 표면조도의 주기와 사각형의 면에 의한 막음현상이 2 차원의 표면조도와 마찬가지로 크게 나타나기 때문인 것으로 판단된다.

Direct numerical simulation (DNS) of a spatially developing turbulent boundary layer (TBL) with regularly arrayed cubical roughness elements was performed to investigate the effects of three-dimensional (3D) surface elements. The staggered cubes downstream were periodically arranged in the streamwise and spanwise directions with pitches of $p_x$/k=8 and $p_z$/k=2, where $p_x$ and $p_z$ are the streamwise and spanwise spacings of the cubes; the roughness height (k) was k=$1.5{\theta}_{in}$, where ${\theta}_{in}$ is the momentum thickness at the inlet. Spatially developing characteristics over the 3D cubical roughness were compared with the data obtained from the DNS over the two-dimensional (2D) rod roughened wall and smooth wall. Introduction of the cubical roughness on the TBL affected the turbulent Reynolds stresses not only in the roughness sublayer but also in the outer layer; and these effects are consistent with those observed over the 2D rough wall.

키워드

참고문헌

  1. Perry, A. E., Lim, K. L. and Henbest, S. M., 1987, "An Experimental Study of the Turbulence Structure in Smooth- and Rough-Wall Boundary Layers," J. Fluid Mech., Vol. 177, pp. 437-466. https://doi.org/10.1017/S0022112087001034
  2. Raupach, M. R., Antonia, R. A. and Bajagopalan, S., 1991, "Rough-Wall Turbulent Boundary Layers," Appl. Mech. Rev., Vol. 44, pp. 1-25 https://doi.org/10.1115/1.3119492
  3. Townsend, A. A., 1976, "The Structure of Turbulent Shear Flow," Cambridge University Press
  4. Schultz, M. P. and Flack, K. A., 2007, "The Rough-Wall Turbulent Boundary Layer from the Hydraulically Smooth to the Fully Rough Regime," J. Fluid Mech., Vol. 580, pp. 381-405. https://doi.org/10.1017/S0022112007005502
  5. Flack. K. A., Schultz, M. P. and Connelly, J. S., 2007, "Examination of a Critical Roughness Height for Outer Layer Similarity," Phys. Fluids 19, 095104. https://doi.org/10.1063/1.2757708
  6. Krogstad, P. –A. and Antonia, R. A., 1994, "Structure of Turbulent Boundary Layers on Smooth and Rough Walls," J. Fluid Mech., Vol. 277, pp. 1-21. https://doi.org/10.1017/S0022112094002661
  7. Lee, S. –H. and Sung, H. J., 2007, "Direct Numerical Simulation of Turbulent Boundary Layer over a Rod-Roughened Wall," J. Fluid Mech., Vol. 584, pp. 125-146. https://doi.org/10.1017/S0022112007006465
  8. Volino, R. J., Schultz, M. P. and Flack, K. A., 2009, "Turbulence Structure in a Boundary Layer with Two-Dimensional Roughness, J. Fluid Mech., Vol. 635, pp. 75-101. https://doi.org/10.1017/S0022112009007617
  9. Kim, K., Baek, S. –J. and Sung, H. J., 2002, "An Implicit Velocity Decoupling Procedure for the Incompressible Navier-Stokes Equations," Int. J. Numer. Meth. Fl., Vol. 38, pp. 125-138. https://doi.org/10.1002/fld.205
  10. Kim, J., Kim, D. and Choi, H., 2001, "An Immersed Boundary Finite-Volume Method of Simulations of Flow in Complex Geometries," J. Comput. Phys., Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  11. Lund, T. S., Wu, X. and Squires, K. D., 1998, "Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulation," J. Comput. Phys., Vol. 140, pp. 233-258. https://doi.org/10.1006/jcph.1998.5882
  12. Spalart, P. R., 1988, "Direct Simulation of a Turbulent Boundary Layer up to Re$\theta$=1410," J. Fluid Mech., Vol. 187, pp. 61-98. https://doi.org/10.1017/S0022112088000345
  13. Jackson, P. S., 1981, "On the Displacement Height in the Logarithmic Profiles," J. Fluid Mech., Vol. 111, pp. 15-25. https://doi.org/10.1017/S0022112081002279
  14. Bhaganagar, Kiran., Coleman, Gary. and Kim, John., 2004, "Effect of Roughness on Wall-Bounded Turbulence," Flow, Turbul. Combust, Vol. 72, pp. 463-492. https://doi.org/10.1023/B:APPL.0000044407.34121.64
  15. Flack, K. A., Schultz, M. P. and Shapiro, T. A., 2005, "Experimental Support for Townsend's Reynolds Number Similarity," Phys. Fluids, Vol. 17, 035102. https://doi.org/10.1063/1.1843135
  16. Krogstad, P. –A., Antonia, R. A. and Browne, L. W. B., 1992, "Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers," J. Fluid Mech., Vol. 245, pp. 599-617. https://doi.org/10.1017/S0022112092000594
  17. Castro, I. P., 2007, "Rough-Wall Boundary Layers: Mean Flow Universality," J. Fluid Mech., Vol. 585, pp. 469-485. https://doi.org/10.1017/S0022112007006921
  18. Cheng, H. and Castro, I. P., 2002, "Near Wall Flow over Urban Like-Roughness," Boundary-Layer Met. 104, 229-259. https://doi.org/10.1023/A:1016060103448
  19. Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. and Antonia, R. A., 2003, "Direct Numerical Simulations of Turbulent Channel Flow with Transverse Square Bars on One Wall," J. Fluid Mech., Vol. 491, pp. 229-238. https://doi.org/10.1017/S0022112003005500