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Prediction of the Fundamental Mode Lamb Wave Reflection from a 
Crack-Like Discontinuity Using Eigen-Mode Expansion

Jaeseok Park*✝, Chang Heui Jang** and Jong Po Lee***

Abstract Based on the idea of eigen-mode expansion, a method to analyze the reflection of Lamb wave from a 
finite vertical discontinuity of plate is theoretically derived and verified by experiment. The theoretical prediction 
is in good agreement with the experimental result, and this strongly suggests that eigen-mode expansion method 
could be used for solution of inverse scattering problem for ultrasonic testing using Lamb wave.
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1. Introduction

Lamb wave was discovered by Horace Lamb 
in 1917 (Lamb, 1889; 1917). Currently, ultrasonic 
testing using Lamb wave is commonly being 
applied to evaluate the materials integrity of thin 
plate and or shell, since the Lamb wave 
propagates the plate with little ultrasonic 
attenuation. Time-consuming ultrasonic scanning 
process is not required accordingly (Alleyne et 
al., 1998). For the application of Lamb wave to 
nondestructive testing, physical understanding of 
interaction between Lamb wave and plate 
discontinuities and methods to quantitatively 
predict results of the interaction are needed 
(Alleyne and Cawley, 1992). For these purposes, 
various numerical methods such as boundary 
element method, finite element method, or hybrid 
solutions have been applied to predict scattering 
of Lamb wave (Cho and Rose, 1996).

Since the Lamb modes are the complete basis 
(Kirrmann, 1995; Bravdo, 1996), eigen-mode 

expansion can be applied to analyze the 
interaction between Lamb wave and plate 
discontinuity. However, in previous studies 
(Torvik, 1967; Gazis and Mindlin, 1960; 
Worlton, 1961; Lowe and Diligent, 2001), only 
reflection at the extremity of plate and vibration 
of circular disk were studied using eigen-mode 
expansion. These were due to difficulties to 
describe the boundary condition of finite vertical 
discontinuity. In this study, therefore, the 
necessities to investigate 1) reflection of the 
lowest anti-symmetric mode Lamb wave from a 
finite vertical discontinuity of plate by 
eigen-mode expansion and 2) its experimental 
verification are recognized.

2. Theoretical Development

Lamb wave, which propagates the plate 
having stress free boundary, has typical 
characteristics of wave guide mode. In the 
direction of depth (  in Fig. 1), particle 
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Fig. 1 Property of Lamb wave: (a) Arbitrary
function along with thickness direction and
(b) Harmonic wave along with plate
direction

Fig. 2 Scattering geometry

velocity or stress has a form of arbitrary 
function, and in the direction of plate (  in 

Fig. 1), there is a form of propagating wave;

  ․    (1)

where   and   are stress tensor and particle 
velocity vector by Lamb wave respectively,   
is aritrary function,   is time, and  and   are 
wave number and angular frequency respectively 
which fulfill the Rayleigh-Lamb frequency 
equations;
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 (2)
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   

 (3)

here,     ,    ,   is the 

thickness of plate,   and   are wave numbers 

of longitudinal wave and transverse wave, 
respectively.

As shown in Fig. 2, once Lamb wave meets 
plate discontinuity, it is to be decomposed into 

reflected wave and transmitted wave of which 
amplitudes are unknown. However, each scattered 
wave can be described by the linear series of 
Lamb modes, since the Lamb modes are 
complete basis;




∞

 
 (4)




∞

 
 (5)

where    ±±… , + and − correspond 
to positive direction and negative direction of 
wave respectively,  is weighting factor,    
is particle velocity,   is stress for th Lamb 
mode of which wave number   is th solution 

of eqns. (2) and (3). The time harmonic term 

  was dropped for simplicity.
At a discontinuity  ∈ , the sum of 

incidence wave and scattered wave should fulfill 
the boundary condition of which assumption is 
that a particle displacement and stress of each 
side of discontinuity are not continuous, and the 
surfaces of both side are stress free. This 
assumption is valid when the width of 
discontinuity is far smaller than the depth of the 
discontinuity but is larger than a particle 
displacement (Rokhlin, 1980). A tight crack-like 
discontinuity would be a good example for this 
boundary condition. So, boundary conditions of 
each part of discontinuity     can be 

rewritten as 

0 =  in+  rf where   ∩   , (6)

0 =  tr where   ∩   , (7)

0 =  in +  rf +  tr 
where  ≠ ∩  

(8)

0 =  in +  rf +  tr 
where  ≠ ∩  

(9)

where superscript in, rf, and tr correspond to 
incidence wave, reflection wave, and transmission 
wave respectively.
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0)()(
2121 =+ −− RΣΣ inc (16)

0)()(
2222 =+ −− RΣΣ inc (17)

Fig. 3 Geometry for the boundary condition

Substitution of eqns (4) and (5) into 
boundary conditions (eqns. (6) to (9)) for the 
geometry shown at Fig. 3 results in eqns. (10) 
thru (13).
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where  ≠ ∩   (13)

Here, the superscript inc stands for incidence 
wave. For two boundary conditions of eqn. (10), 
including  solutions of eqns. (2) and (3), and 
 points along with  produces  unknown  
and  linear equations which can be written 
respectively as
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which is simply rewritten as eqns. (16) and (17) 
using a matrix notation.

here, 
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 respectively. Similarly, boundary 

conditions 11 to 13 produce linear equation set 
which can be written in matrix form as
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here, V1 and V2 of eqns. (23) to (24) are simply 
the matrix notation of corresponding boundary 
condition, eqns. (11) to (13). These nine matrix 
eqns. (16) to (24) can be assembled into global 
matrix form as
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which is simply rewritten as

T + MR = 0 (26)

using a matrix notation (e.g, ⎥
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 and other 

in same way). R, the solution of linear matrix 
eqn. (26), can be calculated directly using the 
matrix identity;

( ) TMMMR TT 1−
= (27)

where   and -1 are the transpose and inverse 
operator, respectively.

Since the energy carried by the Lamb mode 
of which wave number is th solution of 
Rayleigh-Lamb frequency eqns. (2) and (3) is 
defined as eqn. (28) (Morvan et al., 2003),

n
nnn PrrE *)()()( ⋅= , (28)

here,  is acoustic Poynting vector of th 
Lamb mode (Auld, 1989). So the reflection 
index of  th Lamb mode defined as;

inc

n
n

E
ER

)(
)( = (29)

3. Numerical Implementation

At a given single frequency, finite number of 
real and imaginary solution, and infinite number 
of complex solution of Rayleigh-Lamb frequency 

equation exist as shown in Fig. 4, and each 
solution corresponds to individual Lamb modes. 
In real computation, it is not possible to include 
infinite number of Lamb mode to calculate the 
reflection, because the more numbers of Lamb 
modes are included into calculation, the larger 
size of matrix eqn. (25) and the more 
computation time are required. Thus, only 
reasonable numbers, which fulfill energy 
convergency is to be included;

∑∑ =≅
n
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(30)

In this study, 20 Lamb modes at 1.17 MHz·
mm and 200 points at a finite vertical 
discontinuity are included in the calculation.

Fig. 4 Complex solutions of Rayleigh-Lamb 
frequency equations; ‘*’ for anti-symmetric 
mode, ‘o’ for symmetric mode

Fig. 5 Experimental setup
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Fig. 6 Example of A-scan for velocity measurement

Fig. 7 Reflection amplitude of A0 mode Lamb 
wave from notches of 10~100% of through 
wall depth 

Fig. 8 Theoretical prediction for reflection 
coefficients of A0 mode Lamb wave from 
finite vertical discontinuities of plate

4. Experiment

The experimental setup for Lamb wave 
reflection to verify the prediction by eigen-mode 
expansion is shown in Fig. 5. A single comb 
transducer of 1.55 mm pitch was used for both 
receiver and transmitter simultaneously. The 
center frequency and 6 dB bandwidth of 
ultrasonic transducer were 1.17 MHz and 30% 
respectively. A reflection echo at the discontinuity 
was amplified before data acquisition system to 
increase the S/N ratio with 39 dB instrument 
gain. An EDM(electric discharge machinning) 
notched specimen was made of 1mm thick 
aluminum plate. The depth of notch ranged from 
10% to 100%, and, the width and length of 
notch were 0.2 mm and 5 mm, respectively.

Fig. 6 shows the wave forms of reflection 
echoes from the plate extremity at two different 
positions of transducer. The path and time 
differences between two signals are 21.0 mm and 
6.91 μsec which correspond to 3,039 m/s of wave 
velocity. This result confirms that the Lamb 
wave generated by the transducer was A0 mode.

The amplitudes of reflection echoes from 
EDM notches having variety of depth were 
measured. The experiments were performed 10 
times to produce a deviation of measurement. At 
each individual measurement, all instruments 
were reset, and mechanical parts of the 
experimental setup were reassembled.

5. Results and Discussion

Fig. 7 is the experimental results which show 
reflection amplitudes vs. depths of notches. Fig. 
8 shows the theoretical prediction. Both Fig. 7 
and 8 showed similar trend that the reflection 
amplitudes did not simply increase as the depths 
of notches increased; (1) convex in the range of 
0~50%, (2) depression near 50%, (3) linear in 
50~100% with 0.186 and 0.194 of gradients 
respectively. Even though the experimental 
results showed a similar trend with theoretical 
one, the amplitudes showed a little differences in 

detail; (1) theoretical result was concave but the 
experimental result was convex near 60% depth, 
(2) the depression of experimental result near 
50% depth is not as sharp as one of theoretical 
prediction, and (3) 4.5% of gradient difference in 
50~100%. In other word, the experimental result 
is smoother than the theoretical prediction. The 
Lamb wave impulse generated by comb 
transducer does not have single frequency 
1.17 MHz, but have 30% of bandwidth. The 
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difference of two results may result from the 
bandwidth of incident A0 mode Lamb wave.

6. Conclusions

Based on the study of theoretical prediction 
by eigen-mode expansion and experiments to 
verify, followings were concluded;

(1) A method to analyze the reflection of Lamb 
wave from a finite vertical discontinuity was 
derived and experimental data were in good 
agreement with the theoretical prediction 
with a little differences in detail which may 
comes from the bandwidth of incidence A0 
mode Lamb wave. 

(2) The result strongly suggested that 
Eigen-mode expansion could be used for 
solution of inverse scattering problem for an 
ultrasonic testing using Lamb wave. 

(3) For range of 50~100% through wall 
thickness, variation of reflection amplitude 
derived by Eigen-mode expansion could be 
utilized to estimate depth of discontinuity 
with 4.5% corrective factor.

(4) To estimate potential advantage in calculation 
time, comparing with a result by widely used 
CAE(computer aided engineering) tool can be 
suggested.
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