DOI QR코드

DOI QR Code

Dispersion and property evaluation of nanocomposites by aspect ratio of MWCNT

다중벽 탄소나노튜브 형상비에 따른 나노복합재료 분산 및 물성 평가

  • 장정훈 (한국기계연구원 부설 재료연구소) ;
  • 이진우 (한국기계연구원 부설 재료연구소) ;
  • 이원오 (한국기계연구원 부설 재료연구소) ;
  • 이학구 (한국기계연구원 부설 재료 연구소) ;
  • 엄문광 (한국기계연구원 부설 재료연구소) ;
  • 김진봉 (한국기계연구원 부설 재료연구소) ;
  • 변준형 (한국기계연구원 부설 재료연구소)
  • Published : 2010.06.30

Abstract

Tensile and flexural properties and electrical conductivity of MWCNT/epoxy composites with different aspect ratios of MWCNTs were compared. The MWCNT/epoxy mixtures were prepared by mechanical dispersion methods using a homomixer and a three-roll mill, and then composite samples were fabricated by compression molding process. The fractured surfaces of the samples were observed by SEM in order to evaluate the degree of dispersion of MWCNTs. The addition of MWCNTs into epoxy resin improved its tensile strength by 7.0% while its flexural strength increased slightly as compared with the one without MWCNTs. In the case of MWCNTs having highest aspect ratio, the mechanical properties of the composites were decreased. When the contents of CM-95 MWCNTs were varied, maximum of tensile and flexural strengths occurred at 1wt% and 0.5wt%, respectively. From the higher contents than these, tensile and flexural strengths of the composites decreased. Electrical conductivities of in-plane and thought-the-thickness directions of MWCNT/epoxy composites were measured using a two-point probe method. They increased with the increase of the aspect ratios and concentrations of MWCNTs in the epoxy matrix.

MWCNT의 형상비 차이에 따른 MWCNT/에폭시 복합재료의 인장 및 굽힘 특성과 전기전도도를 비교하였다. 호모믹서(homomixer)와 3단롤밀(three-roll mill)을 사용하여 분산된 MWCNT와 에폭시 혼합물을 금형에 부어 압축 성형법으로 시편을 제조하였다. 에폭시 내 MWCNT의 분산 정도를 평가하기 위해 SEM을 사용하여 시편의 파단면을 관찰하였다. MWCNT의 첨가로 인해 인장강도는 최대 7%증가 하였으나 굽힘강도는 증가가 미미하였으며 형상비가 가장 큰 MWCNT의 경우에는 감소하였다. MWCNT 포함량을 변화시켰을 때 CM-95의 경우 인장강도는 1wt%에서, 굽힘강도는 0.5wt%에서 최대값을 보였으나 더 많은 포함량에서는 감소하였다. MWCNT/에폭시 복합재료의 두께 방향 및 면내방향 전기전도도는 2단자법에 의한 저항값으로부터 계산되었으며 MWCNT의 형상비가 클수록, 또 포함량이 증가할수록 전기전도도 값은 증가하였다.

Keywords

References

  1. 강태준, 김동일, 허용학, 김용협, "탄소나노튜브의 선택적 딥코팅을 이용해 제작된 적층 복합재료의인장 물성에 대한 연구," 한국복합재료학회지, 제19권 제3호, 2006, pp. 23-28.
  2. 이상의, 박기연, 이원준, 김천곤, 한재흥, "다중벽 탄소나노 튜브가 첨가된 평직 유리섬유/에폭시 복합재료의 미세구조 및 전자기적 특성," 한국복합재료학회지,제19권 제1호, 2006, pp. 36-42.
  3. Kim K.H., Jo W.H., "A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites," Carbon, Vol. 47, 2009, pp. 1126-1134. https://doi.org/10.1016/j.carbon.2008.12.043
  4. Ma P.C., Kìm J. K., Tang B.Z., "Effects of functìonalization on the properties of carbon nanotube/epoxy nanocomposites," Composites Science & Technology, Vol. 67, No. 14, 2007, pp. 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006
  5. Lourie O, Cox D.E., Wagner H.D., "Buckling and colapse of embedded carbon nanotubes," Physical Review Letters, Vol. 81 , No. 8, 1998, pp. 1638-1641. https://doi.org/10.1103/PhysRevLett.81.1638
  6. Kim Y.J., Shin T.S., Choi H.D., Kwon J. H., Chung Y, Yoon HG. "Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites," Carbon, Vol. 43, No. 1, 2005, pp. 23-30. https://doi.org/10.1016/j.carbon.2004.08.015
  7. Gong X., Liu J., Baskaran S., Voise R.D., Young J.S, "Surfactant-assisted processing of carbon nanotube/polymer composite," Chemical Materials, Vol. 12, No. 4, 2000,pp. 1049-1052. https://doi.org/10.1021/cm9906396
  8. Bernadette A.H., WilIiam J.B., "Polycarbonate carbon nanofiber composites," European Polymer Journal, Vol. 41, 2005, pp. 889-893. https://doi.org/10.1016/j.eurpolymj.2004.11.040
  9. Iosif D.R., Suong V.H., "Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling," Carbon, Vol. 47, 2009, pp. 1958-1968. https://doi.org/10.1016/j.carbon.2009.03.039
  10. Gojny F.H., Wichmann M.H.G., Kopke U., Fiedler B., Schulte K., "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content," Composite Science & Technology, Vol. 64, 2004,pp. 2363-371 https://doi.org/10.1016/j.compscitech.2004.04.002
  11. Nadler M., Werner J., Mahrholz T., Riedel U., Hufenbach W., "Effect of MWCNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites." Composites: Part A, Vol. 40, 2009, pp. 932-937. https://doi.org/10.1016/j.compositesa.2009.04.021
  12. Wu Z., Li J., Timmer D., Lozano K., Bose S., "Study of processing variables on the electrical resistivity of conductive adhesives," Intemational Journal of Adhesion & Adhesives, Vol. 29, 2009, pp. 488-494. https://doi.org/10.1016/j.ijadhadh.2008.10.003
  13. Kenneth K.H.W., Martin Z.A., Jeffery L.H., Sabahudin H., John H.T.L., Wankei W., "The effect of carbon nanotube aspect ratio and loading on the elastic modulus of electrospun poly(vinyl alcohol)-carbon nanotube hybrid fibers," Carbon, Vol. 47, 2009, pp. 2571-2578. https://doi.org/10.1016/j.carbon.2009.05.006
  14. Seyhan A.T., Metin T., Karl S., "Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling," Materials Science and Engineering A, Vol. 523, 2009, pp. 85-92. https://doi.org/10.1016/j.msea.2009.05.035

Cited by

  1. Fabrication of carbon nanotubes dispersed woven carbon fiber/epoxy composites and their damping characteristics vol.47, pp.8, 2013, https://doi.org/10.1177/0021998312445513
  2. Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives vol.29, pp.2, 2016, https://doi.org/10.7234/composres.2016.29.2.079
  3. Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating vol.27, pp.3, 2014, https://doi.org/10.7234/composres.2014.27.3.109
  4. Preparation and Characterization of Elastomeric Ethylene Terpolymer Reinforced Poly(Ethylene-Co-Isosorbide Terephthalate)/Multi-Walled Carbon Nanotube Composites vol.22, pp.2, 2014, https://doi.org/10.1177/096739111402200212