동적인 변조 및 코딩 기술을 이용한 모바일 와이맥스 MBS 중계 시스템

Mobile WiMAX Relay System with Dynamic Modulation and Coding Scheme for Multicast Broadcast Service

  • 조치현 (성균관대학교 전자전기컴퓨터공학과) ;
  • 윤희용 (성균관대학교 정보통신공학부)
  • 투고 : 2008.08.04
  • 심사 : 2010.02.11
  • 발행 : 2010.06.15

초록

현재 모바일 통신 분야에서 다양한 방송형 서비스에 대한 요구가 크게 증가하고 있다. 이러한 요구에 맞추어 IEEE802.16e 표준의 모바일 WiMAX 시스템은 공유 채널을 사용하는 MBS(Multicast Broadcast Service)를 통해서 많은 사용자들에게 효율적인 서비스를 제공하고 있다. 본 논문에서는 동적인 변조 및 코딩 기법을 중계 시스템에 적용하여 MBS의 성능을 향상시키는 방법을 제안한다. 이 방식은 제안하는 MBS 중계 시스템에 동적인 변조 및 코딩 기법을 적용하여 안정적이며 높은 전송률을 보장한다. 컴퓨터 시뮬레이터인 NS-2를 이용한 실험 결과는 제안하는 시스템이 고정된 변조 및 코딩 기법을 이용한 기존의 중계 시스템보다 향상된 전송률을 얻을 수 있음을 증명한다.

The demand on various broadcasting services has been greatly increasing in the area of mobile communication. In IEEE802.16e standard and mobile WiMAX, the multicast broadcast service (MBS) uses shared downlink channel for efficiently supporting a number of users. In this paper we propose a dynamic modulation and coding scheme with relay network to enhance the performance of MBS. The proposed approach employs the adaptive modulation and coding scheme for both the base station and relay station to achieve consistently high throughput. The result of computer simulation with NS-2 shows that the throughput and transmission time are significantly improved by using the proposed approach compared to the existing schemes having a fixed modulation level for the RSs.

키워드

참고문헌

  1. R. Srinivasan, S. Timiri, A. Davydov and A. Papathanassiou, "Downlink Spectral Efficiency of Mobile WiMAX," in Proc. VTC2007-Spring, IEEE 65th, pp. 2786-2790, Apr. 2007.
  2. IEEE, IEEE Std 802.16e-2005, IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, Feb. 2006.
  3. T. Jiang, W. Xiang, H. Chen and Q. Ni, "Multicast Broadcast Services Support in OFDMABased WiMAX Systems," IEEE Communications Magazine, vol.45, no.8, pp.78-86, Aug. 2007.
  4. C. Hoymann, M. Dittrich, and S. Goebbels, "Dimensioning Cellular Multihop WiMAX Networks," in Proc. IEEE Mobile WiMAX, pp.150-157, Mar. 2007.
  5. C. Hoymann, K. Klagges, and M. Schinnenburg, "Multihop Communication in Relay Enhanced IEEE 802.16 Networks," in Proc. the 17th IEEE PIMRC, Helsinki, Finland, pp.1-4, Sep. 2006.
  6. Chi Hyun Cho, Kyung Tae Kim, and Hee Yong Youn, "Mobile multi-hop relay system using AMC for multicast broadcast service over mobile WiMAX," in Proc. WTS 2008, Pomona, pp.46-52, Apr. 2008.
  7. The network simulator-ns-2: http://www.isi.edu/nsnam/ns/.
  8. Tao. Z, Koon, Teo K.H and Zhang. J, "Aggregation and Concatenation in IEEE 802.16j Mobile Multihop Relay (MMR) Networks," in Proc. IEEE Mobile WiMAX Symposium, pp.85-90, Mar. 2007.
  9. Erwu. L, Dongyao. W, Jimin. L, Shen Gang and Jin Shan, "Performance Evaluation of Bandwidth Allocation in 802.16j Mobile Multi-hop Relay networks," in Proc. VTC2007-Spring, IEEE 65th, pp.939-943, Apr. 2007.
  10. Motorola, Nokia, Texas Instruments, Altera, and Philips Semiconductors, "1XTREME Physical Specification for Integrated Data and Voice Services in cdma2000 Spread Spectrum Systems," 3GPP2, C50-200010611-013R1, Jun. 2001.
  11. Taesoo. K, Howon. L, Sik. C, Juyeop. K and Dong-ho. C, "Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System," IEEE Communications Magazine, vol.43, no.12, pp.136-146, Dec. 2005.