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CPS: Operating System Architecture for Efficient Network
Resource Management with Control-Theoretic Packet
Scheduler

Hyungsoo Jung, Hyuck Han, Heon Young Yeom, and Sooyong Kang

Abstract: The efficient network resource management is one of the
important topics in a real-time system. In this paper, we present
a practical network resource management framework, control-
theoretic packet scheduler (CPS) system. Using our framework, an
operating system can schedule both input and output streams ac-
curately and efficiently. Our framework adopts very portable feed-
back control theory for efficiency and accuracy. The CPS system is
able to operate independent of the internal network protocol state,
and it is designed to schedule packet streams in fine-grained time
intervals to meet the resource requirement. This approach simpli-
fies the design of the CPS system, and leads us to obtain the in-
tended output bandwidth. We implemented our prototype system
in Linux, and measured the performance of the network resource
management system under various network QoS constraints. The
distinctive features of our principles are as follows: It is robust and
accurate, and its operation is independent of internal network pro-
tocols.

Index Terms: Bandwidth reservation, control theory, operating sys-
tem, packet scheduling, quality of service (QoS).

1. INTRODUCTION

The primary goal of achieving quality of service (QoS) in a
network is to meet diverse QoS requirements of each network
flow with limited network resources, and to use given network
resources efficiently under such constraints. The advances of
multimedia service technology have been boosted recently and
the widening use of real-time systems in conjunction with the
development of high performance network infrastructure have
given momentum to the development of an efficient network
management system.

To satisfy the requirements of integrated services, the concept
of service differentiation as a network architecture model is nec-
essary in network QoS domain. The requirements that should be
satisfied by a differentiation model are 1) throughput require-
ments, 2) delay bound, and 3) delay jitter of different appli-
cations in real-time or soft real-time systems, However, in to-
day’s heterogeneous Internet environment where a lot of differ-
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ent policies over the flow control system are employed, there is
no de facto scheme for a QoS-guaranteed control system that is
applicable everywhere.

In that point of view, the role of the operating system (OS)
is to regulate and multiplex the access of multiple application
programs to the network resources. Unfortunately, current gen-
eral purpose OSs are not equipped with a resource management
module, even though lots of genuine techniques are suggested to
support high throughput communication. Current OS’ inability
to control limited network resources can be an obstacle to ex-
ploit high speed network bandwidth effectively.

The goal of our work is, 1) to design a low-overhead and accu-
rate resource management system, 2) to validate our prototype
architecture, and 3) to analyze the output performance of new
architecture by deploying it in a general purpose OS. This work
is accomplished without sacrificing any other of the OS’ activi-
ties.

In this paper, we present a practical design of an operating
system architecture for efficient network resource management
with a control-theoretic packet scheduler (CPS) system. The
main contribution of the CPS system, as the name infers, is a
fine-grained scheduling of bandwidth reserved network flows
without incurring additional context switches inside the ker-
nel. Current Linux requires a context switch to activate kernel
thread if there is any pending software interrupt (formally han-
dled in the bottom half of the OS) such as a network input/output
(I/O) event. Even though such a way of software interrupt han-
dling through the kernel thread has the advantage of reducing
the number of context switches by means of delaying a con-
text switch at least until any running process consumes its time
quantum or it is blocked and scheduled by the kernel, this de-
layed handling mechanism cannot make possible a fine-grained
packet scheduling. However, the CPS exploits the trigger state
[1] to perform a packet scheduling. The control owner of the
trigger state can be any process, so invoking a packet scheduler
does not need additional context switch, and this instantaneous
invocation of a packet scheduler, after every network I/O, in-
creases the scheduling granularity of the CPS.

Another contribution of our work is that the CPS system can
react smoothly to the system or network load condition by adap-
tively adjusting a service interval of a packet. This is achieved by
applying the proportional-integral-derivative (PID) control the-
ory [2] practically. The feedback control part of the CPS can
handle any interference out of the CPS system without incur-
ring misbehaviors.

Our previous work [3] dealt with the control-theoretic ap-
proach for QoS control in network routers. In this paper, we
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mainly concentrate on the end-host QoS issues. We deployed
our prototype architecture in a Linux kernel. If the control sys-
tem can accurately regulate the bandwidth of each flow, applica-
tion services such as multimedia streaming services can easily
maintain constant sending rates so that the network management
system can efficiently manage the available bandwidth. With
these significant features of the CPS system, this paper describes
following issues that is concerning: 1) What kind of design op-
timization we must consider to apply the control-theoretic ap-
proach to a real system, 2) how useful the implemented system
is, and 3) the performance result of the CPS system.

The rest of this paper is organized as follows: Related work
concerning control-theoretic flow control mechanism and OS
support for network resource management are discussed in Sec-
tion IL. In Section III, the overall architecture of the proposed
CPS system is presented and in Section IV, we describe the main
control methodology which is based on the PID control, for our
system. In Section V, we present the packet scheduling mecha-
nism which employs soft-timer for fine-grained scheduling. The
performance of the proposed system is evaluated through vari-
ous experiments in Section VI and finally, Section VII concludes
our work.

II. RELATED WORKS

Keshav [4] did early work on the control-theoretic approach
to the reactive flow control in networks. His theoretical model is
based on the control theory, and the presented model is built on
networks that do not reserve bandwidth. The model supports fair
rate controlling for the network flow by a packet pair probing
technique. And the model initially sets the frequency of control
once per round trip time (RTT).

Since many artistic packet scheduling approaches such as
core-stateless fair queueing (CSFQ) [5] and worst-case fair
weighted fair queueing (WF2Q) [6] are known to be theo-
retic, deploying these approaches in endsystems is hard to
achieve. Unlike these approaches, the CPS can control sys-
tem misbehaviors effectively due to its feedback compensation
mechanism without knowing flow charateristics in advance.

Active queue management (AQM) techniques such as random
early detection (RED) [7]-[9] mainly focus on detecting conges-
tion and notifying end nodes of the congestion for end nodes to
handle the congestion event. However, unlike the CPS system,
they fail to control end-to-end user datagram protocol (UDP)
flows.

In [10], they proposed a novel model of transmission con-
trol protocol (TCP) throughput that is based on the RTT and the
packet loss rate, and the model is used in the TCP friendly rate
control (TFRC). As explained in Section VI, the CPS does not
distort the model and the CPS regulates the delay to achieve QoS
requirements.

Qlinux [11] and LinuxRK [12]-[15] projects can be repre-
sented as a real implementation of the QoS-guaranteed system
built in kernel that concerns only end-host QoS issues. Qlinux
deployed the hierarchical start-time fair queuing (H-SFQ) [16],
[17] packet scheduler to provide the network QoS. It also ap-
plied the lazy receiver processing (LRP) [18] mechanism for
exact charging of the time being spent in protocol process-
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Fig. 1. Overall architecture of the CPS system.

ing. However, the OS sometimes has to do a spin-checking on
whether its packet should be serviced or not. This leads to an
overhead in the OS and it reduces OS’ resource availability.

In LinuxRK, the authors created a new kernel thread to make
distinctions between the processing of normal network flow and
that of reserved network flow, instead of using kernel’s default
bottom half handler. However, the newly created kernel thread
cannot accurately control the incoming flow. Moreover, Lin-
uxRK applies a deadline monotonic approach to process each
arriving packet for network flows that reserve a prescribed QoS
level. So, they used a default kernel timer to check the bytes of
processed packets for each flow, and this is another limitation
against achieving exact bandwidth controlling.

As for an application level approach, we can consider two
works [19], [20]. These works employed control-theoretic ap-
proach to make it feasible to achieve service differentiation in a
web server application. They implemented well-known control
theory and enable us to analyze their experimental results. How-
ever, they are constructed not at the kernel level but at the appli-
cation level.

III. ARCHITECTURAL OVERVIEW

In this section, we describe the overall architecture of our
CPS system. First, we explain the limitation of Linux, which
has no other QoS-related component inside the original OS, and
we enumerate important components of the CPS system in turn.

A. Limitations of Linux

We have implemented the prototype of the CPS system in
the Linux kernel. Since Linux has been developed as a general
purpose operating system, its ability to meet various demands
of time-critical applications leaves a lot to be desired, although
fewer resource-demanding application mixes can be easily han-
dled by the current best-effort method. In current versions of
Linux, the kernel does not have any inherent network bandwidth
control mechanism. To overcome this shortcoming, we used the
well-known concept of soft timers [1]. Using the soft timers con-
cept, it is possible to exploit its fine-grained timing ticks for pin-
point scheduling of packet flows and implement an efficient as
well as low-overhead packet scheduler for a network QoS with-
out using timer interrupt.
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Fig. 2. Receive flow diagram of the CPS system.

B. System Components of the CPS

The design focus of the CPS system is its efficiency and exact
timing control for network QoS. As shown in Fig. 1, the CPS
system is composed of four main components. The first compo-
nent is the soft timer module that provides fine-grained timing
ticks and invokes packet scheduler frequently.

The second one is a packet demultiplexer or a packet clas-
sifier. The demultiplexer checks which network stream the in-
coming or outgoing packet belongs to, based on the information
in the packet header. For incoming packets, the demultiplexer
verifies checksum to drop abnormal packets, a priori, so that the
receive packet scheduler can provide accurate end-to-end flow
rate to the application process. After demultiplexing, the classi-
fier determines the service level and records the future service
time in which the packet should be serviced, then it enqueues
the packet in the designated send/receive queue. In contrast to
the packet scheduler which is called by the Actuator, the de-
multiplexer/classifier is invoked according to the normal kernel
mechanism, On the receiver side, it is called by the network in-
terrupt handler, while on the sender side it is called by the end
of the kernel control flow of the user program. And the demul-
tiplexer/classifier should invoke the limiter to inform the CPS
system of send/receive events.

The third component is a packet scheduler which determines
whether or not to service each packet in each queue based on the
future service time of each packet.

The last one is the brain of the CPS system: A feedback
control system that actually applies control-theoretic scheduling
policy to each QoS flow. The feedback control system consists
of three key components:

« The monitor continues to sample output value (net bandwidth
value observed at the final point of the packet processing) of
each flow stream and keeps the history of the average band-
width for each flow.

o The controller/actuator is a component giving updated value
to input point (i.e., demultiplexer/classifier). The updated
value reflects the control-theoretic calculation, and the actua-
tor can provide an adaptive control mechanism.

o The limiter acts as an on-off switch to the controller/act-

uator. It continuously monitors the data rate of each flow
to determine whether or not to apply the result of control-
theoretic calculation (done by the controller/actuator) to
packet scheduling. In an open and unpredictable environment
such as the Internet, flows cannot always come into the sys-
tem constantly. Without the limiter, control system misbe-
haves and drives the whole system to an aggravated state. The
limiter plays an important role in the CPS system.

IV. MAIN CONTROL MECHANISM

In this section, we describe the control theory adopted in the
CPS system. We first give an overview of PID control. Then, we
describe how we incorporate PID control into CPS in turn. -

A. PID Control

With its three-term functionality offering treatment of both
transient and steady-state responses, PID control provides a
generic and efficient solution to real world control problems; in
particular, when the mathematical model of an observed system
is not formally defined, and therefore analytical design schemes
cannot be used. Because exact modeling of the Internet via
mathematical formalism is very difficult due to its complexity,
we choose PID control [2] as our primary control strategy.

B. Applying PID Controls to Network QoS

Fig. 2 shows the receive flow diagram of the CPS system. It
is an example diagram to show the internal operation of the CPS
system; we will give a detailed description of the packet sched-
uler in a later section. In this section, we describe the mecha-
nism and implementation of key components in our control sys-
tem. The PID controller is composed of three key components,
which was described shortly in Section I1I-B.

The first one to explain is the monitor. The monitor is a com-
ponent to observe the net output bandwidth obtained at the final
point of the packet processing. On the receiver side, it should
be at the socket layer while on the sender side it is at the device
driver routine for sending packet streams. The variable out® is
the sampled bandwidth of flow ¢, and its mathematical form is
out® = CopiedByteofFlow, /T.
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The sampling interval T plays a very important role in the
control system. If we choose a short sampling interval, the con-
trol system is very accurate and responsive in a continuous time
domain. However, in a discrete time domain environment like a
computer system, too short of a sampling interval could make
the control system oscillate and become unstable. Also, in a net-
work subsystem, packets are received at random intervals. If the
sampling interval is shorter than the packet’s inter-arrival time,
the output bandwidth is calculated too often, which results in a
wasted CPU cycles. We therefore need to insert a relaxation fac-
tor in deciding a sampling interval: In our implementation, we
chose one second as a sampling interval.

The second component is the controller/actuator. This is the
brain of our control system. The controller/actuator first gathers
all output bandwidths of QoS sensitive flows from the moni-
tor. Based on the output values, it calculates updated input val-
ues depicted as error’. We added a converting equation that
makes the controller/actuator generate error’ in time interval
(seconds) while getting input in bandwidth (bytes/sec). Follow-
ing the conventional definition in [2], The governing PID equa-
tion for flow i is written in the discrete time domain form as
follows:

u'(t) = ui(t — 1) + Kp - fout'() — out’(t — 1)]
KPTS 4
+ T] - out (t)
+ LS. [out’ (t) — 2out'(t — 1) + out’(t — 2)] (1)

Ts

where out(t) is the output bandwidth at time ¢, K p is the propor-
tional gain, 77 is the integral time constant, 75 is the derivative
time constant, and T is a sampling (or observation) interval
such that

_ out(t)—out(t—1)
dt Ts ’

/Otout(t)dt ~ Tsi out(z).

The integral gain K and the derivative gain Kp can also be
expressed as K = Kp - Ts /Ty and Kp = Kp - T /Ts. The
three gain constants are parameters that mediate the effect of
the control to the system, and are needed to be tuned for
each specific system that employs control theory. u’(t) is the
newly-obtained bandwidth value, and our converting equation
is error'(t) = PacketArrivallnterval /u’(t). The PacketArrival-
Interval is a heuristic value of the packet inter-arrival time under
the assumption of 1 KB packets at 100 Mbps connection. This
parameter is necessary in the converting equation to convert
u(t) (Mbps) to error’(t) (millisecond). Another implementa-
tion issue is the tuning of gain constants in our PID controller
(i.e., Kp, T;, and T;). When we deployed the CPS system in
the kernel, we tried to set the constant value as 2% (where k is
an integer), so the governing equations can be calculated using
only bitwise operations for efficiency. The experimental results
of the bandwidth graph under various gain constant settings are
presented in the next section.

The last component is the limiter. The purpose of the limiter

)
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is to prevent the control system from responding excessively un-
der a temporal variation of the network state. It tracks down the
input bandwidth variation for each QoS related flow. If the input
bandwidth is under the reserved bandwidth, the limiter switches
off the control system. Actually, the meaning of input bandwidth
in sender/receiver is different. On the sender side, an input band-
width is measured at the point where the demultiplexer/classifier
is called while on the receiver side it is obtained after the receive
interrupt handler is invoked.

In the CPS system, we applied an exponential averager to
trace bandwidth variations. The main reason for this is for the
limiter to be able to distinguish temporal bandwidth collapses
such as a slow start after timeout with the overall throughput
degradation of the network. When the system is in an overall
degraded state, the limiter should switch-off the effect of the
controller/actuator to prevent the system from responding ex-
cessively. Let the raw input bandwidth and switching variable
for flow i at time ¢ be In*(t) and S*(t). Then, the governing
equation of the limiter is as follows:

i (t):Ini(t—l) RO - {o, if In’(t) < B

. 3
2 2 1, if In‘(¢) > B ®

where B’ is the r¢served bandwidth for flow i. Finally, the actual
value of Interval® used when the packet scheduler records future
service time at the received packet is updated as follows:

Interval’(t) = Interval’(t — 1) + error’(t) x S%(t). 4

In real implementation, we have converted the multiplication
operation to a bitwise operation whenever it is possible to re-
duce overhead inside the kernel.

V. PACKET SCHEDULING

In CPS system, a packet scheduling occurs in the packet
scheduler, which is invoked by the actuator. The CPS system
does not use a kernel thread level management to do a packet
scheduling procedure. Instead of using the bottom half handler
(i.e., the software interrupt handler that is called by the dedi-
cated kernel thread in a general OS), we devised a fast checking
function using soft-timer. Because the Linux’s default timer has
relatively a long checking period!, it is very hard to achieve fine-

IThe basic timer interrupt interval (10 ms) can be adjusted to be 1 ms by
recompiling the entire kernel.
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grained throughput control of a packet stream. The fine-grained
timing we intent to achieve needs to be shorter than microsec-
ond resolution in modern microprocessor architectures.

In soft-timer, timer is triggered at the pre-designated trigger-
ing states, which are shown in Fig. 3. Even within a second,
Linux kernel passes these triggering states enormous times, so
that we have very fine-grained timing resolution, which is finer
than microsecond resolution. This remedies the coarse-grained
timer interval problem. Thereby the CPS system can achieve
good performance, and it can operate without causing a large
overhead.

A. Soft Timer Module

The soft timer plays a critical role in the CPS system. The mo-
tivation of implementing the soft timer is to obtain a fine-grained
timing service. In the CPS system, two components, the monitor
and the packet scheduler, should be invoked periodically by the
system. Although the monitor invocation can be coarse-grained,
the packet scheduler invocation should be fine-grained to be able
to schedule every packet as soon as possible.

The default timer interrupt service provided by Linux is very
coarse. Even if the timer interrupt interval can be changed, the
overhead caused by context switching cannot be ignored. There-
fore, we use soft timer to invoke the monitor and the packet
scheduler. For the monitor, we set a long time interval inside the
soft timer module while we set the fine-grained time interval for
the packet scheduler. A soft timer enables the packet scheduler
to be invoked whenever the prescribed system execution states,
i.e., trigger state shown in Fig. 3, are reached.

B. Send/Receive Packet Processing

Using the soft timer, we have designed and implemented a
fine-grained packet scheduler. The main packet scheduler, which
is irrelevant to the OS’ default bottom half handler, is invoked
whenever the system enters a trigger state, and it should handle
both receive and send packet processing.

B.1 Packet Demultiplexing and Classification

Fig. 4 shows the packet scheduling framework in the CPS
system. In the packet scheduler, every incoming packet is first
checked as to whether it is destined to any registered network
stream, and if it is for the registered one, the incoming packet
is time-stamped with its future service time, future service time
(FST). (Though the incoming packet is not for the registered net-
work stream, its FST is calculated by using the spare bandwidth
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of the 0S.) Then, the packet is enqueued in the corresponding
socket queue that stores incoming packets of the flow the packet
belongs. Suppose the arrived packet is for the flow 7 and it is
4th packet at time ¢. Then, the multiplexer/classifier records its
EST (FST;) inside the sk_buff structure which contains packet

contents. When the kernel records the FST;, it needs the current

time T, and the latest timestamp value (LTS?) for that flow. The
LTS® is the FST of the lastly enqueued packet of the flow 7, and
it is recorded in a socket structure. If LTS® is greater than T,
then FST; becomes FST; = LTS® + Interval®(¢), otherwise it

becomes FSTj« = Ty + Intervalé(t). After FST; is calculated,

the LTS’ value should also be updated to LTS’ = FST.

In particular, the CPS system maintains a queue for each net-
work flow for the packet scheduling. Although this new struc-
ture makes additonal queueing delay, the higher level conges-
tion control algorithm such as TCP’s congestion control algo-
rithm or that of TFRC does not get a harmful effect from this
delay. As shown in Fig. 5, the congestion control mechanism
of TCP or TFRC sees only an RTTaggregatca, Which is the sum
of RTTyima and RT Tphysical. This makes the congestion window
size smoothly configured to the stable point despite the newly
introduced delay, RTTyia. Therefore, we can expect that the
congestion control algorithm adopted in higher level protocol
will not be badly affected from the CPS system, and will inter-
act well with the variation of the RT Ty (i.€., queueing de-
lay). This expectation has been confirmed by the experiments
which will be presented later.

B.2 Packet Processing

General packet processing is performed in the packet sched-
uler. The term ‘received/incoming packet refers to any type of
packet that comes into the CPS system; in sending process it
refers to a packet coming down from the application program
while in receiving process it means a packet just arrived from the
remote sender. Once every incoming packet is classified and en-
queued in each socket queue by the demultiplexer/classifier, the
general packet scheduler processes the incoming packet in a dif-
ferent way from the current Linux OS to guarantee the QoS. In
the CPS system, every packet is checked against the current
time. If the FST;- value of a packet is smaller than the current
time (i.e., the service time for the packet is already elapsed),
this packet deserves to be serviced in this invocation time. Oth-
erwise, all the packets enqueued in this socket queue should
wait until the next invocation time. This generic packet schedul-
ing procedure is applied to both incoming and outgoing packet
streams in the same way.
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Fig. 6. Experimental environment: (a) LAN environment and (b) WAN
environment. In the WAN environment, two computers are located
in different cities in Korea (Seoul and Daejon, respectively), and are
connected via Internet.
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Fig. 7. Acquired network bandwidth of three competing processes which
reserved 10, 25, and 40 Mbps, respectively, without feedback control.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results of the CPS
system. We performed a couple of experiments using two ma-
chines, which have a 2 GHz CPU and a 3Com 3¢59x 100 Mbps
Ethernet NIC device, in both LAN and WAN conditions (Fig. 6).

We used a simple TCP send/receive program installed in both
machines, which transmits and receives 1 Kbyte data packet, re-
peatedly. Our experiments focused on the timing accuracy and
the ability for exact rate control of the CPS system. We mea-
sured effective throughput obtained in the application layer. And
we assume that all QoS-enabled flow should start at zero band-
width, then the flow is controlled by the CPS system.

A. Non-feedback System

In Fig. 7, we measured the throughput of four competing net-
work flows controlled by the non-feedback control system, i.e.,
the system which has no component that provides feedback con-
trol. Among four network flows, one is non QoS-enabled flow
and the other three flows reserved 40, 25, and 10 Mbps of band-
width, respectively. The experiment is performed in the LAN
condition to test in a large bandwidth environment. In this ex-
periment, we applied a direct control theory that does not use
feedback. The equation, FST} = LTS’ + L}/B* (where B‘ and
L; mean the reserved bandwidth of the flow 7 and the length of
the jth packet of flow i, respectively), was used inside the packet
scheduler, suppressing feedback components in the CPS system.
So, Lg /B¢ is a simplified form of the anticipated service inter-
val. As we can see from the Fig. 7, the resulting behavior is
very abnormal. Not only flows could not obtain their subscribed
bandwidth but also a large oscillation occurred. This is due to
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Table 1. Ziegler-Nichols tuning rule based on step response of the
system (first method).

Type of controller
PID

Kp T[ TD
122 1 2.L |05 L

Table 2. Effects of independent P, |, and D tuning on closed-loop
response. (SI, SD, LD, and MC means small increase, small decrease,
large decrease and minor change, respectively.)

Increasing | Increasing | Increasing
Kp Ky Kp
Rise time Decrease SD SD
Overshoot Increase Increase Decrease
Settling time SI Increase Decrease
Steady-state error | Decrease LD MC
Stability degrade Degrade Improve

the deficiency of the feedback control mechanism. We carefully
conjecture that even if a more accurate mathematical theory is
used for direct control, a similar result will occur without a feed-
back control system.

B. Tuning of Gain Constant

If the mathematical model of the Internet can be derived, then
it is possible to apply various design techniques for determin-
ing parameters of the controller. In the literature, there have
been many research efforts that modelled the network analyti-
cally with proper constraints [7]-[9]. However, the Internet is
so complicated that modeling the Internet with all types of traf-
fic can not be easily obtained, then an analytical approach to
the design of a PID controller is not easy. As we stated earlier,
the merit of our approach is practicality, and the methodology
to achieve the goal is to use an appropriate control strategy in
real network systems. The reason of selecting PID control is
that we can tune gain constants for the PID controller without
modeling the Internet completely that requires nontrivial anal-
ysis work. This enables us to adopt black-box abstraction to
model the Internet to simplify the complexity of analysis. We
therefore resort to experimental approaches to the tuning of our
PID controller. We use Ziegler-Nichols (Z-N) rules for tuning
PID controllers [10]. Z-N rules are based on experimental step
responses or based on the value of K, that results in marginal
stability when only proportional control action is used. In Z-N
rules, if a controller is the PID controller, the rule we follow
is shown in Table 1. In Table 1, L and T denotes delay time
and time constant that are determined by observing the response
curve. In the CPS system, we make L and 7" have the same
value of 2 seconds because these time values are at least larger
than our sampling time of 1 second. According to set to 1.2, 4,
and 1. However, the target response bahavior of the CPS sys-
tem should be stable, which means that the settling time can be
longer than what Z-N rules intend to tune.

In addition to Z-N tuing rules, we also adjust the gain con-
stants according to our performance criteria. This is done by
observing various response characteristics of the CPS system
with a variety of gain constant settings. The effects of gain con-
stants on the closed-loop system are described in Table 2. To
assure stability, we incerase the derivative gain Kp compared
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Fig. 8. Behavior of a QoS flow which reserved 30 Mbps bandwidth under PID control with various values of gain constants: (a) Effect of integral gain

constant (T}) and (b) varying gain constants.

to other two gain constants. The tuning method that we adopt in
the CPS system is well accepted in the industry. This explains
why the argument exists that academically proposed PID tuning
rules sometimes do not work well on industrial controllers. Our
choice of gain constants also reflects the gap between academia
and industry.

Fig. 8 shows the resulting behavior of an application level
throughput under various values of gain constants. This exper-
iment was conducted in the LAN environment, and we mea-
sured throughput time history of a single flow and plotted all
histories in one figure. In Fig. 8(a), we plotted three bandwidth
trajectories measured under three conditions of varying T; 1)
T, = 1,2) T; = 0.146, and 3) T; = 0.1136, respectively, fix-
ing K, = 0.125 and Ty = 1. As K; = Kp/T; increases, the
rising time and the steady-state error decreases while overshoot
increases significantly. This follows the effect described in Table
2. The first bandwidth trajectory graph (K, = 0.125, T; = 1,
and T,; = 1) shows the slowest rising time, and the flow has no
overshoot value. Although it converges to the target bandwidth
(i.e., 30 Mbps), the settling time is too long. The second one
shows the most appropriate behavior and we selected these val-
ues as the tuning value of gain constants in the CPS system. It
has a fast rising time and a negligible overshoot value, It also
converges 10 the target bandwidth very quickly without fluctua-
tion. The last one shows very large overshoot value, although
it shows the fastest rising time. A small value of 7; makes
KT, /T, large, and the system becomes very sensitive to the
value of e(t). The last one is not appropriate for the system due
to the excessive overshoot.

In Fig. 8(b), we plotted two bandwidth trajectories under dif-
ferent set of gain constants: 1) K, = 0.877, T3 = 1.142,
Ty = 01279, and 2) K, = 1, T; = 2, T, = 0.1136, re-
spectively. The first flow graph shows a small amount of os-
cillation, and it has a long stabilization time compared to the
graph shown in Fig. 8(a). It converges to the target bandwidth
after 40 seconds. The second one has a larger value of overshoot
than the first, and its stabilization time is also longer than that
of the first. A long stabilization time is due to the small value of
T4(=0.1136), and large fluctuations result from the large value

of K.(=1). If we increase the value of K, the system does not
converge to the target bandwidth, oscillating infinitely. This phe-
nomenon is caused by the characteristics of the system. Actu-
ally, using large value of K., the response behavior of the sys-
tem largely oscillates and if the sampling period resonates with
the oscillation period of the modeled system, the control system
cannot converge to a stabilized point. It either diverges or keeps
oscillating ceaselessly. We have finally chosen K. = 0.125,
T, = 0.146, and Ty 1 as gain constants to make the CPS
system stable.

C. Flow Behavior
C.1 Bandwidth Reservation at the Receiver

We measured application level bandwidth variation when the
bandwidth reservation is done by the reciever. The sender just
keeps sending and the flow rate is controlled by the receiver. The
experiment is performed in the LAN condition to test in a large
bandwidth environment. Fig. 9(a) shows the bandwidth his-
tory of one non QoS-enabled flow and three QoS-enabled flows
started at three different times: 50 seconds, 100 seconds, and
150 seconds after the experiment begins. Each QoS-enabled ap-
plication process reserved 10 Mbps, 25 Mbps, and 40 Mbps of
bandwidth, for a total of 75 Mbps. As we can see from the fig-
ure, the CPS system accurately controlled QoS-enabled flows
competing with non QoS-enabled flow. The throughput of a non
QoS-enabled flow is decreased as each of the QoS-enabled flows
starts its transmission. Since the normal class flow is expected to
be serviced in the boundary of spare bandwidth, our CPS system
can be said to provide exact flow rate control to each flow.

Fig. 9(b) shows the result of measuring the application level
throughput of network flows under the condition of the gain con-
stants: K, = 0.877, T; = 1.142, and Ty = 0.1279. For these
gain constants, the system shows some fluctuation, but the sys-
tem converges to target bandwidth as time elapses. We have two
processes that reserve 20 and 40 Mbps of network bandwidth
each, and they start communication at 50 seconds and 100 sec-
onds after the initiation of a non QoS-enabled flow. As we can
see from the figure, even though the flow behaviors of QoS-
enabled streams are oscillating before they converges, only non
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environment.

QoS-enabled flow is affected by oscillation. This means that the
CPS system only affects other normal class flows when one of
the QoS-enabled flows exhibits an abnormal flow behavior. This
is one of the important characteristics that a control system
should have: The localization of an anomalous flow effect.

C.2 Bandwidth Reservation at the Sender

Figs. 10(a) and 10(b) show three application level bandwidth
histories measured at the receiver located in a remote machine,
which is receiving packets from QoS-enabled applications using
TCP in LAN and WAN enviroments. In contrast to the earlier ex-
periment, bandwidth is reserved at the sender program and the
goodput (effective throughput) is measured at the receiver. Each
sender application reserved 5 Mbps, 7 Mbps, and 10 Mbps for
a total 22 Mbps of bandwidth. While we measured three band-
width histories simultaneously in the LAN environment, we per-
formed only one flow each time in the WAN condition due to the
lack of available network bandwidth in WAN.

In the LAN environment, each flow obtained 4.75 Mbps, 6.64
Mbps, and 9.46 Mbps of bandwidth, respectively, as an average
goodput. The gab between target (reserved) bandwidth and ac-
tual bandwidth arised from a small amount of bandwidth that is

comsumed by TCP congestion control protocol (fast retransmis-
sion and fast recovery). In the WAN environment, our system
observes 4.54 Mbps, 6.44 Mbps, and 9.15 Mbps of bandwidth,
respectively, on the average. As we can see from Fig. 10(b),
some bandwidth collapses are observed at the WAN environ-
ment because of either the packet dropping at the autonomous
system (AS) border router or a packet loss. After bandwidth col-
lapses, sliding window flow control in TCP recovers from con-
gestion, and the target bandwidth is regained.

D. Packet Scheduling Frequency

Since the packet scheduler is invoked based on the soft timer,
we have observed that the frequency of packet scheduling highly
depends on the load of the CPU. If the CPU was under full uti-
lization, we could not acquire the satisfactory results we had
expected. A soft timer module is inherently designed to avoid
the receive livelock problem in core routers where there are no
CPU-intensive programs in it. Under an idle CPU condition, the
soft timer module is invoked once every 478 nanoseconds, while
under a fuli CPU usage condition, it is invoked once every 8.4
milliseconds. In a pure sense, this indicates that the soft timer
cannot be a good candidate to be a fine-grained timing tool un-
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der full CPU usage conditions. But in a reasonable sense, we
can assume that in a server system, where the bandwidth reser-
vation is performed for the sending process, the probability of
having CPU-intensive programs is much lower than having I/O-
intensive programs that invoke the packet scheduler at a high
frequency.

VII. CONCLUSION

In this paper, we presented the architecture of the CPS sys-
tem that can satisfy a diverse level of QoS requirements de-
manded by numerous kinds of applications in Internet environ-
ments. Also, we implemented the prototype of the CPS system
in a Linux kernel and measured its performance. The CPS sys-
tem can be ported in the kernel independent of in-kernel network
protocols (i.e., congestion or flow control scheme). This design
policy, which we call black-box abstraction, makes it practical to
apply a feedback control theory to computer systems that have
coarse-grained timing granularity. The CPS system needs only
a raw input bandwidth rate and a net output bandwidth rate,
observed at the end of protocol stack in the kernel. We have
learned a couple of significant facts from our work: 1) There
are a number of severe constraints to adopt theoretical control
theory inside a kernel, 2) the appropriate gain constants differ
slightly from what we expected due to the relatively long sam-
pling interval, and 3) the implementation was relatively simple
and straightforward: We modified only a couple hundred lines
of Linux kernel.
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