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A Novel Subspace Tracking Algorithm and Its Application
to Blind Multiuser Detection in Cellular CDMA Systems

Imran Ali, Doug Nyun Kim, Yun-Jeong Song, and Naeem Zafar Azeemi

Abstract: In this paper, we propose and develop a new algorithm
for the principle subspace tracking by orthonormalizing the eigen-
vectors using an approximation of Gram-Schmidt procedure. We
carry out a novel mathematical derivation to show that when this
approximated version of Gram-Schmidt procedure is added to a
modified form of projection approximation subspace tracking de-
flation (PASTd) algorithm, the eigenvectors can be orthonormal-
ized within a linear computational complexity. While the PASTd
algorithm tries to extracts orthonormalized eigenvectors, the new
scheme orthonormalizes the eigenvectors after their extraction,
yielding much more tacking efficiency. We apply the new tracking
scheme for blind adaptive multiuser detection for non-stationary
cellular CDMA environment and use extensive simulation results
to demonstrate the performance improvement of the proposed
scheme,

Index Terms: Code division multiple access (CDMA), Gram-
Schmidt procedure, multinser detection, subspace tracking.

L. INTRODUCTION

There has been a great interest in the subspace methods as
they have been demonstrated to be applied in a variety of signal
processing areas such as channel estimation and multiuser de-
tection for code division multiple access (CDMA) systems, pat-
tern recognition, source localization, adaptive filtering etc. Sub-
space methods primarily rely on separating the signal and noise
subspaces by estimation of a few eigenvectors corresponding to
signal (or noise) subspace and their corresponding eigenvalues
and then compute the parameter of interest [11-{5]). Although
the traditional ways of obtaining the eigen components such as
eigen-value decomposition (EVD) and singular value decom-
position (SVD) are still the most efficient methods of eigen
analysis, however, they have turned out to be non-practical for
many of the signal processing applications due to their inherent
computational complexity. To address the complexity problem,
different approaches have been taken to estimate the principle
subspace [6]-[12]. Out of these, projection approximation sub-
space tracking (PAST) [6] has been acknowledged as one of the
most robust and efficient method to estimate the signal subspace
under the mild conditions, with linear complexity of O(NK),
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where N is the dimension of noisy data and K is the number
of desired eigen components. However, in a rapidly changing
dynamic environment, such as cellular CDMA system, this al-
gorithm turns out to be relatively slow in converging to signal
subspace and in many situations, it keeps oscillating rather than
converging at all {13]. This is because PAST approximates the
projection of current input vector on the columns of the weight
matrix in current iteration with projection of current input vector
on weight matrix in previous iteration. Hence the iterative min-
imization of this approximated cost function using method of
least squares estimates cannot guarantee the orthonormality of
eigenvectors and the algorithm cannot always lead to the con-
vergence of weight matrix into the signal subspace. Within [6],
the author proposes that any standard orthonormalization proce-
dure can be recursively applied to the updated correlation ma-
trix of input vector, with complexity of O(NK?) but such a
scheme leads to poor numerical properties due to bad condition-
ing of correlation matrix, especially at low SNR. More recently,
orthogonal PAST (OPAST) {13] and exponential window fast
approximated power iteratioin (FAPT) [8] algorithms have been
reported in the literature. The OPAST, as the name suggests,
is an orthonormalized version of PAST algorithm and it can
track eigenvectors very efficiently with same linear complexity
as PAST algorithm. The FAPI algorithm is based upon power
iteration method [14] and in our simulation results, we found its
tracking capability to be as much efficient as that of OPAST and
it also has same linear complexity, i.g., O(IN K). Although both
of these two algorithms can track the dominant eigenvectors,
they can not track corresponding eigenvalues, thus they can be
treated as examples of plain learning rather than coupled learn-
ing. In many subspace applications such as blind multiuser de-
tection [15}, eigenvalues are also needed to be computed. Esti-
mation of eigenvalues from eigenvectors increases the computa-
tional complexity up to O(N?K).

In this paper, we propose a new scheme for the tracking of
eigen components by adding an orthonormalization scheme to
a modified form of PAST deflation (PASTd) algorithm. Starting
from an approximation of Gram-Schmidt procedure developed
by Oja and Karhunen [16], [17], we derive a new framework
to show that eigenvectors extracted by PASTd algorithm can
be orthonormalized, so that both eigenvectors and eigenvalues
can be extracted efficiently, within linear computational com-
plexity. We implement the subspace multiuser detection using
the subspace components obtained by the proposed scheme and
demonstrate performance improvement.

II. SYSTEM MODEL

Since this paper is focused on application of subspace track-
ing in CDMA communication system, so we develop a signal
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model for a cellular CDMA system; however, the algorithm can
equally well be applied to any subspace application. We con-
sider a synchronous CDMA system, with K active users in the
cell and processing gain of N. The data bit of kth user at time
t, denoted as by (t), is transmitted after getting spread by the
spreading code of kth user given as ¢;, = [}, ck, -, c%]T. The
received signal will be the superposition of K user’s signals each
of which passing through L path channels given by [18],

K L
t)= Z Apb (1) ng,wk,z(t — ) +on(t) )

k=1 =1

where Ay is the received amplitude of the kth user, gy, ;, s,;, and
Tk, are the channel gain, received signature, and propagation
delay of kth user from [th path, respectively, and n(t) additive
white Gaussian noise process. Here, we assume that T,,, > 7y 5,
where T, is symbol time and 7y, , is the kth user’s delay spread
and in such situations, intersymbol interference (ISI) can be ne-
glected [18], [19]. The received signal is then sampled at chip
rate, and collected as a series of N x 1 sampled vectors cor-
responding to one bit duration, so that sampled vector at any
general sampling instant is given as

r=CGAb+n ~ 2

where N x L vector Cy, is given as C = [k 1, Ck 2, -, Ck, 1]
so that ¢y, ; is spreading vector of kth user from [th path and we
define N x KL matrix, C := [Cy,Cy, - - -, Cg]. Similarly the
channel gain matrix, G, is defined as G = [G, G, -+, Ggl,
so that G = [gx.1,9k,2, - 9k, 1] 7 and its last KL — L rows
have all zeros entries to make its order KL x K for multipli-
cation compatibility. We define A = diag(A, As, -, Ak)
and b = [by, by, - --,bg]T. The product of matrices C and G is
N x K matrix D, i.g., D := CGQ, so that each of its column, d,
is effective signature of the kth user. Thus, composite received
vector is given as

K

r= Z Apbrdy + n. (3)
Rz

The autocorrelation matrix for the received input vector is given
as
R = E{rrf} = DADY + §1y. @

The EVD of the N x N autocorrelation matrix, R, can be written
as

R = UA U + U, UH 5

where A; = diag(M, Mg, -+, Ax) contains the K largest
eigenvalues; their corresponding eigenvectors are the columns
of U, and remaining N — K eigenvalues, all equal to 62,
are diagonal entries of A, and their corresponding eigenvec-
tors are columns of U,,. Several parameters of crucial impor-
tance have been shown to be estimated from signal subspace
{ug, e}, k = 1,2,---, K, such as channel state information,
blind multiuser detection, direction of arrival in MIMO applica-
tions [1], [4], [15], etc.

The signal in (3) contains interference from K — 1 CDMA
users. To detect kth user’s bit corresponding to tth sampling in-
stant, bi(t), from received sampled vector r(t), the multiuser
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Table 1. The PASTd algorithm.

x;1(t) = r(t)
FORk=1:K
m)—uf(t—l) k(1) M
Ak(t) = BAs»(t — 1)+ lyx(t)]? (In
m(t) = (5 @) (1)
my(t) = [xi(t) — ug(t — Dyu(®)le(t)  AV)
wg () = ug(t — 1) + my(t) V)
Xp41(t) = xx(t) — wr(t)yr(t) (VI

END

detector, m(t), is computed. There are numerous ways to com-
pute multiuser detector; the one considered in this paper is based
upon signal subspace obtained at the fth sampling interval [15]

U, ()AF (U (t)da (1)
AU, (1A (HUH (t)da(t)

so that, by (t) = sign(mZ (¢)r(t)). It can be noted that the mul-
tiuser detector in (7) needs only the timing and effective signa-
ture of desired user (besides the signal subspace components),
so it is completely blind.

(6)

m (t) =

1. SUBSPACE TRACKING

Consider the sampled received vector, r and sampling index
t, then an unconstrained cost function [6],

= E{|[r(t) - W)W (O)r(1)]|}*
= tr(R(t)) — 2tr(WH ()R ()W) (1)
+tr(WEORMOWR). WHHW() (D)

will have a stationary point W, such that W = U,Q, where
W e CEXK ¢ontains K dominant eigenvectors of correlation
matrix of the received vector r. Furthermore by iterative mini-
mization of J(W), its global minimum, W ;,,, contains K dis-
tinct dominant eigenvectors of correlation matrix, R. Replacing
the expectation in the cost function with exponentially weighted
modified sum modifies the cost function as

J(W(t))

i

=38 e(t) - WOWHy (1)

j=1

J'(W(t)) ®

where (3 is forgetting factor, defined as 0 < [ < 1. Here, the
authors [6] make an approximation that y(t) := W (¢)r(t) =
WH (t — 1)r(t), such that equation (9) becomes

t

=3 B7e(1)

Jj=1

J(W(t)) - W)yl ©

Above approximated exponentially weighted modified cost
function can be solved for W(¢) using RLS algorithm which
results in the PAST and its deflation version PASTd algorithm,
which is shown in Table 1.
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In the PASTd algorithm, after updating kth eigenvector, it is
subtracted away from the received signal and resultant quantity
is treated as received vector for updating next eigenvector {step
(VI), Table 1). This is done to ensure that next eigenvector spans
the null space of previous eigenvector and hence the orthonor-
mality can be achieved. However, this method of orthonormal-
ization is not effective, as addressed in [13].

A. Proposed Subspace Tracking Scheme

Now consider any general coupled-learning algorithm, where
innovation introduced to update each eigenvector is denoted as
my(t), so that we can write
= uk(t — 1) + mk(t).

u(t) 10)

Once this eigenvector is updated, the standard Gram-Schmidt
procedure for orthonormalization is given by two steps

k-

ui(t) = uk(t) Z Oue®}u() A
L w
0 = Tw@n 12

As can be seen, the summation in (11) contains both index j
and k, which means for each kth eigenvector, the j must be
started from zero all over again, which is the main reason that the
complexity of standard Gram-Schmidt procedure is considered
to be high. The complexity can be reduced if index k& is taken out
of summation, which can not be done in this form of equation
(11) since the index k is involved in vector product inside the
summation.

Now if we introduce (11) and (12) in (10) and considering
that, since m(t) is very small its quadratic terms can be con-
sidered to be zero, then we can write the approximated form of
Gram-Schmidt procedure [16], [17], as given in equation (13),
where 1i(t) is approximately orthogonalized form of u(t) and
normalization step in (12) is also absorbed in (13)

Z w;(t — 1)mg(t) + ull(t - Dm;(t))u;(t - 1)}

— (ui (¢ — Dmg())ug(t - 1). (13)
The orthonormalization step (13) in its current form will re-
duce the complexity since summation still involves both index
j and k. However, as we will show now, if (13) is applied for
the orthonormalization of PASTd algorithm, the index k can be
taken out of summation, resulting in a new orthonormalization
expression with linear complexity. Consider only the summation
term of (13) for now, which can be broken into two parts as

sum = i(uJH(i — Dmy(¢))u,(t — 1)
k-1
+ > (uff (t = Dmy(6)uy(t — 1).

Jj=1

(14)
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Now here, if we want to use (13) to update eigenvector in PASTd
algorithm to get orthonormalized eigenvectors, we can remove
the step (VD) in Table 1. In such case, we can see that, x; (f) =
Xo(t) = --- = xx—1(¢) and let us denote it as x(t). Then the
innovation can my(t) in the step (IV) can be written as

my(t) = [x(t) — ue(t — Dye(t)]7(2)- (15)

Consider the first summmation in (14) and put the value of my(¢)
from (15),

k=1
suml =Y {uf (t—1)[x(t) —ux (¢ - Dyr (&)} () bu; (- 1).

j=1

’ (16)
Now, we can see from Table 1 that y;(t) = uf’(t)x(t) as
x1(t) = x2(t) = --- = xg-1(t) = x(t). Furthermore,
we assume that eigenvectors were orthogonal in previous it-
eration (and this assumption becomes reality if we initialize
PASTd algorithm by applying SVD on first 50 data vectors, as
in [15]) and since the index j goes upto k — 1 only, the product
uj'fl (t — 1)ug(t — 1) = 0. Introducing these two facts in (16),
we get

k-1
suml = Z Y (tme(thu;(t — 1)

Jj=1

k—1
= 7i(t) Yy (Duy(t - 1)

Jj=1

(17

where the second equality follows from the fact that 73 (¢) is a
scalar independent of index j and can be taken out of summa-
tion. Thus, we successfully removed the index & from the first
summation. Now consider the second summation in (15) and put
the value of m; () from (15),

k—1

sum2 = Z{ukH(t— D [x(t) —u;(t—

Jj=1

Dy, (0)]7; (1) (¢ —1).

(18)
Using the same reasoning as that for the first summation, we can
say yr(t) = uff (t — 1)x(t) and v} H(t — yug(t — 1) = 0, so
that we can modify (18) as

k1
sum2 = Z yr(t) i (t)u,(t — 1)
j=1
’ k—1
= k() Y 7(t)uy(t —1) (19)
j=1

where the second equality froltows from the fact that y(¢) is
scalar and independent of index 7, so it can be taken out of the
summation. Thus, using (17), (18), and (19) in (13), the approx-
imated form Gram-~Schmidt algorithm can be written as

k—1
(Y vt =)

— (> T (ul - 1))

j=1

— (u{t — m(t)u(t - 1)).

U (t) =ug(t) — 7 (

(20)
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Table 2. Proposed modified PASTd algorithm.
x1(t) = r(t), suml = 0, sum2 = 0

FORk=1:K
yr(t) = ufl (t = 1)xk(t) 0))
Ae(t) = BAe(t — 1) + [y (t)? (D
() = (Y 8) (I
my(t) = [xx(t) — wi(t — Dy (t) 7 (t) av)
IFE>2
suml = suml + (yx_1(tJug—1(t —1)) (V)
sum?2 = sum?2 + (751 (t)ug1(t — 1) (VD
sum3 = {u(t — \)my(t)}hug(t — 1)) (VI
END
u, (1) = ug(t — 1) + my(t) — 7 (t)suml
—yk(t)sum2 — sum3 (VIII)
w(t) = oy ax)

END

Table 3. Detailed account of complexity for proposed scheme.

Step Additions Multiplications
I NK NK - K
II 2K K
I 2K 0
v 2NK NK
\Y NK NK
VI NK NK
Vil 2NK NK-K
VI 2NK 4ANK
IX N -1 N+1
Total | ONK+N+4K -1 |8NK+N-K-1
Order O(NK) O(NK)

Table 4. Comparison of subspace tracking complexity algorithms.

Step Additions Multiplications
PASTd 3INK + K ANK 42K
Proposed INK + 4K 9NK - K
NOOja | NK +5N+K+9 | ANK +6N +3K +3
p)
OPAST | 4NK 42K -1 | ‘NVEFTINHIK
+5K + 11
N 2 2
FAPL SNK + N +4K 3NK + 2N + 6K
+4K +11K + 14

Apparently, (20) looks very complicated, however, as shown
in the Table 2, it has much less complexity since the index j
needs not be started from zero for all the eigenvectors. More-
over, since eigenvalues’ update is kept unchanged from PASTd

algorithm’s approach, they are tracked efficiently, unlike the
OPAST.
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B. Complexity Comparison

As can be seen from the Table 3, the total computational com-
plexity is linear with respect to both N and K, though it is higher
than PASTd and OPAST. Thus, we derived an approximation of
Gram-Schmidt procedure for PASTd algorithm, which reduced
the complexity from O(NK?) to O(NK). This difference will
become significant when the number of subspace components to
be extracted is high.

Table 4 compares the computational complexity of subspace
tracking algorithms. It should be noted, however, that normal-
ized orthogonal Oja (NOQja) [20], OPAST, and FAPI algo-
rithms do not track the eigenvalues of the principle subspace, so
they cannot be used directly to compute subspace multiuser de-
tector. To compute eigenvalues from eigenvectors, the Rayleigh
quotient [21]
uf! ()R (t)ug(1)

uf (t)uk(t)

is used and for that we additionally need to keep an updated
correlation matrix of received vector by

Aw(t) = ey

R(t) = BR(t — 1) + r(t)rH (1) (22)
This additional computation requires N?K + 2N K multiplica-
tions and N2 K +2N K additions. Thus, for the multiuser detec-
tion application, complexity of NOOja, OPAST and FAPI algo-
rithms turn outs to be O(N?K). Contrary to that, the proposed
algorithm keeps track of eigenvalues and can be used to imple-
ment multiuser detection within linear computational complex-

1ty.

IV. SIMULATION

In this section, we will present simulation results to demon-
strate the performance of proposed scheme. Consider a syn-
chronous CDMA cell with X' = 10 active users, transmitting
BPSK modulated data, spread by randomly generated code with
spreading gain of N = 31. Let k¥ = 1 is the desired user,
with signal to noise ratio of SN R = 20 (unless otherwise noti-
fied). Five of the interfering users are 10 dB, three are 20 dB and
one user is 30 dB stronger than desired user, e.g., A7 = 1, A2 =
A2 =...= A2 =10, A2 = A7 = A = 100, and A%, = 1000.
A non-stationary frequency selective channel is used with L = 5
channel paths is used, where the Doppler frequency of desired
user is 100 Hz and that for interfering users is uniformly dis-
tributed in the interval of [1,100). Under the Rayleigh channel
assumption, the channel gains are generated as Gaussian random
numbers. A total of 1000 bits were transmitted in all examples
except the Example 3 where 10,000 bits were used to calcu-
late BER results. The results for PASTd have not been included
since it could not produce comparable results in most examples.
Where applicable, the eigenvalues for OPAST and FAPI algo-
rithms are obtained by Rayleigh quotient.

Example 1 (Subspace error). In the first example, we will
demonstrate the subspace estimation efficiency of the proposed
scheme. Since, for a certain matrix, eigen components are
unique, so we can demonstrate the tracking capability by mea-
suring the relative difference between eigen components ob-
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Subspace Error (dB)
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Fig. 1. Comparison of subspace error of proposed algorithm with differ-
ent subspace tracking algorithms.
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Kalman

SINR (dB)
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i i 1
o 100 200 300

500 600
Number of iterations

Fig. 2. BER performance comparison of different subspace based and
Kalman filter based multiuser detectors.

tained by tracking and those by directly applying EVD on ma-
trix. Subspace error can thus be given as [13]

_ iy - U,(UFU,) U U U
VE

where Ug and Ug are obtained by EVD and any tracking algo-
rithm respectively. Fig. 1 plots and compares the subspace error
performance of proposed scheme, OPAST, and FAPI algorithms
in units of dB. As can be seen, the proposed scheme maintain
—40 dB error right from the start; however, OPAST and FAPI
reach the same result in mature state.

Example 2 (SINR performance): The output signal to noise
and interference ratio (SINR) is given by

SE(t) (23)

{m{ (t)4:1ds (1)}

{m{’()(x(t) - b1 (t)Ardi (1))}

(24)
Fig. 2 plots the output SINR averaged over 500 simulation runs
for different subspace tracking methods. For the sake of compar-
ison, we have plotted SINR performance of recently proposed
Kalman filter detector [22}, applied to same set of system pa-
rameters. As can be seen, subspace based methods outperforms
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Bit error rate (BER)

s ; ; i ; ; i ; : :
1o 10 12
SNR {dB)

Fig. 3. BER performance comparison of subspace detector with Kalman
filter based multiuser detector.

Instantaneous bit error rate (BER}

Proposed, NOOja, and OPAST ARCRARREERE

L i L i L i i i
0 100 200 300 400 500 800 700 800 960
Number of iterations

1000

Fig. 4. Instantaneous BER tracking comparison of different subspace
based and Kalman filter based multiuser detectors.

the Kalman filter detector significantly, where as the proposed
schemes needs least computation for this performance.

Example 3 (BER performance). The bit error rate. (BER)
performance of subspace multiuser detector is compared with
Kalman filter in Fig. 3. A total of 100, 000 bits were inputted to
each algorithm at SNR ranging from 5 dB to 20 dB. The num-
bers of errors considered for each SNR value were averaged over
25 simulation runs.

Example 4 (BER tracking performance). An adaptive algo-
rithm improves its performance as it tends towards its conver-
gence. An important measure of performance can thus be the
instantaneous bit error rate at each iteration, which shows how
much it is probable for a detector to receive a bit in error towards
its way to convergence. Fig. 4 compares the BER tracking per-
formance of subspace detectors and Kalman filter.

BER performance comparison of subspace detector with
Kalman filter based multiuser detector.

V. CONCLUSION

In this paper, we proposed a new subspace tracking algo-
rithm by approximately orthonormalizing the PASTd algorithm
with an approximation of Gram-Schmidt procedure. We showed
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that, although the complexity of proposed tracking scheme was
higher than the PASTd algorithm itself, but it was still linear
with respect to both number of subspace components to be
tracked as well the dimension of noisy data. We showed that
some of the recently proposed well known subspace tracking
schemes cannot implement multiuser detector directly as they
cannot track eigenvalues. We implemented the subspace mul-
tiuser detection using the subspace components tracked by the
proposed scheme and showed using several performance mea-
surement criteria that it outperforms the well know Kalman filter
based multiuser detector.
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