DOI QR코드

DOI QR Code

Effect of tribochemical silica coating on the shear bond strength of rebonded monocrystalline ceramic brackets

단결정형 세라믹 브라켓의 재접착 시 tribochemical silica coating이 전단접착강도에 미치는 영향

  • Jeon, Young-Mi (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Son, Woo-Sung (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Kang, Sang-Wook (Department of Orthodontics, School of Dentistry, Pusan National University)
  • 전영미 (부산대학교 치의학전문대학원 치과교정학교실) ;
  • 손우성 (부산대학교 치의학전문대학원 치과교정학교실) ;
  • 강상욱 (부산대학교 치의학전문대학원 치과교정학교실)
  • Received : 2010.02.02
  • Accepted : 2010.04.19
  • Published : 2010.06.30

Abstract

Objective: The purpose of this study was to investigate the effect of tribochemical silica coating on the shear bond strength (SBS) of rebonded ceramic brackets using nano-filled flowable composite resin. Methods: A total of 60 premolars were prepared and divided into 4 equal groups as follows: Tribochemical silica coating (TC) + Transbond XT (XT), TC + Transbond supreme LV (LV), Sandblast treatment (SA) + XT, SA + LV. Treated ceramic brackets were rebonded on the premolars using each adhesive. All samples were tested in shear mode on a universal testing machine. Results: SBS of silica coated groups were high enough for clinical usage (TCLV: 10.82 $\pm$ 1.82 MPa, TCXT: 11.50 $\pm$ 1.72 MPa). But, SBS of the sandblast treated groups had significantly lower values than the tribochemical silica coated groups (SALV, 1.23 $\pm$ 1.16 MPa; SAXT, 1.76 $\pm$ 1.39 MPa; p < 0.05). There was no difference between the shear bond strength by type of adhesive. In the silica coated groups, 77% of the samples showed bonding failure in the adhesive. In the sandblast treated group, all bonding failures occurred at the bracket-adhesive interface. Conclusions: The result of this study suggest that newly introduced nano-filled flowable composite resin and tribochemical silica coating application on debonded ceramic bracket bases can produce appropriate bond strengths for orthodontic bonding.

본 연구는 탈락된 세라믹 브라켓을 tribochemical silica coating하고 nano-filled flowable composite resin (Transbond Supreme LV, 3M Unitek, Monrovia, Calif, USA)을 이용하여 재접착하였을 때 교정치료에 충분한 접착강도를 얻을 수 있는지 평가하기 위해 시행하였다. 총 60개의 소구치를 준비하여 다음의 4개 군으로 나누었다: Tribochemical silica coating (TC) + Transbond Supreme LV (LV), TC + Transbond XT (XT), Sandblast treatment(SA) + LV, SA + XT. 재처리된 세라믹 브라켓은 각각의 접착제를 이용하여 치아에 부착하였다. 시편들을 상온의 생리식염수에 1주일간 보관한 뒤 열순환을 시켰다. 만능시험기로 전단접착강도를 측정한 뒤 파절양상을 평가하였다. TC군은 임상적으로 충분한 강도를 보였다(TCLV: 10.82 $\pm$ 1.82 MPa, TCXT: 11.50 $\pm$ 1.72 MPa). 하지만 SA군은TC군에 비하여 유의하게 낮은 전단접착강도를 보였다(SALV: 1.23 $\pm$ 1.16 MPa, SAXT: 1.76 $\pm$ 1.39 MPa, p < 0.05). LV군과 XT군의 전단접착강도는 유의한 차이가 없었다. TCLV, TCXT군 모두 시편의 77%가 접착제에서의 파절을 보였고, 각 군당 1개씩의 시편에서 법랑질 파절이 관찰되었다. SA군은 모든 파절이 브라켓과 접착제 계면에서 발생하였다. LV군과 XT군의 탈락양상에는 유의한 차이가 없었다. 이상의 연구 결과에서 보면 nano-filled flowable composite resin과 tribochemical silica coating 처리를 이용하여 세라믹 브라켓을 재접착하면 충분한 전단접착강도를 얻을 수 있다. 단 법랑질 파절의 가능성이 있으므로 탈접착 시 적절한 기구와 기술을 이용해 주의깊게 브라켓을 제거해야 한다.

Keywords

References

  1. Kew KK, Djeng SK. Recycling ceramic brackets. J Clin Orthod 1990;24:44-7.
  2. Andrews LF. The six keys to normal occlusion. Am J Orthod 1972;62:296-309. https://doi.org/10.1016/S0002-9416(72)90268-0
  3. McLaughlin RP, Bennett JC. Finishing and detailing with a preadjusted appliance system. J Clin Orthod 1991;25:251-64.
  4. Reynolds IR. A review of direct orthodontic bonding. Br J Orthod 1975;2:171-8.
  5. Sung JY, Kang KH. Shear bond strength of rebonded ceramic brackets. Korean J Orthod 2009;39:234-47. https://doi.org/10.4041/kjod.2009.39.4.234
  6. Martina R, Laino A, Cacciafesta V, Cantiello P. Recycling effects on ceramic brackets: a dimensional, weight and shear bond strength analysis. Eur J Orthod 1997;19:629-36. https://doi.org/10.1093/ejo/19.6.629
  7. Gaffey PG, Major PW, Glover K, Grace M, Koehler JR. Shear/peel bond strength of repositioned ceramic brackets. Angle Orthod 1995;65:351-7.
  8. Yim JB, Lee JW, Cha KS. Shear bond strength of recycled orthodontic brackets treated by variable reconditioning methods. Korean J Orthod 1996;26:569-79.
  9. Chung CH, Friedman SD, Mante FK. Shear bond strength of rebonded mechanically retentive ceramic brackets. Am J Orthod Dentofacial Orthop 2002;122:282-7. https://doi.org/10.1067/mod.2002.125994
  10. Toroglu MS, Yaylali S. Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets. Am J Orthod Dentofacial Orthop 2008;134:181e1-7.
  11. Kang SW, Son WS, Park SB, Kim SS. Effect of thermocycling on shear bond strength and mode of failure of ceramic orthodontic brackets bonded to different porcelain restorations. Korean J Orthod 2009;39:225-33. https://doi.org/10.4041/kjod.2009.39.4.225
  12. Zachrisson BU, Buyukyilmaz T. Bonding in orthodontics. In: Graber TM, Vanarsdall RL, Vig WL editor. Orthodontics: current principles & techniques. 4th ed. St Louis: Mosby; 2005. p. 579-659.
  13. Shahverdi S, Canay S, Sahin E, Bilge A. Effects of different surface treatment methods on the bond strength of composite resin to porcelain. J Oral Rehabil 1998;25:699-705. https://doi.org/10.1046/j.1365-2842.1998.00299.x
  14. Zachrisson YO, Zachrisson BU, Buyukyilmaz T. Surface preparation for orthodontic bonding to porcelain. Am J Orthod Dentofacial Orthop 1996;109:420-30. https://doi.org/10.1016/S0889-5406(96)70124-5
  15. Birnie D. Ceramic brackets. Br J Orthod 1990;17:71-4.
  16. Harris AM, Joseph VP, Rossouw PE. Shear peel bond strengths of esthetic orthodontic brackets. Am J Orthod Dentofacial Orthop 1992;102:215-9. https://doi.org/10.1016/S0889-5406(05)81055-8
  17. Calamia JR. Etched porcelain veneers: the current state of the art. Quintessence Int 1985;16:5-12.
  18. Kern M, Thompson VP. Bonding to glass infiltrated alumina ceramic: adhesive methods and their durability. J Prosthet Dent 1995;73:240-9. https://doi.org/10.1016/S0022-3913(05)80200-8
  19. Amaral R, Ozcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 2006;22:283-90. https://doi.org/10.1016/j.dental.2005.04.021
  20. Matinlinna JP, Vallittu PK. Silane based concepts on bonding resin composite to metals. J Contemp Dent Pract 2007;8:1-8.
  21. Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc 1998;129:567-77.
  22. D'Attilio M, Traini T, Di Iorio D, Varvara G, Festa F, Tecco S. Shear bond strength, bond failure, and scanning electron microscopy analysis of a new flowable composite for orthodontic use. Angle Orthod 2005;75:410-5.
  23. Miles PG. Indirect bonding with a flowable light-cured adhesive. J Clin Orthod 2002;36:646-7.
  24. Uysal T, Sari Z, Demir A. Are the flowable compoites suitable for orthodontic bracket bonding? Angle Orthod 2004;74:697-702.
  25. Ryou DB, Park HS, Kim KH, Kwon TY. Use of flowable composites for orthodontic bracket bonding. Angle Orthod 2008;78:1105-9. https://doi.org/10.2319/013008-51.1
  26. Tecco S, Traini T, Caputi S, Festa F, de Luca V, D'Attilio M. A new one-step dental flowable composite for orthodontic use: an in vitro bond strength study. Angle Orthod 2005;75:672-7.
  27. Bishara SE, Ajlouni R, Soliman MM, Oonsombat C, Laffoon JF, Warren J. Evaluation of a new nano-filled restorative material for bonding orthodontic brackets. World J Orthod 2007;8:8-12.
  28. Bishara SE, VonWald L, Olsen ME, Laffoon JF. Effect of time on the shear bond strength of glass ionomer and composite orthodontic adhesives. Am J Orthod Dentofacial Orthop 1999;116:616-20. https://doi.org/10.1016/S0889-5406(99)70195-2
  29. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  30. Kitahara-Ceia FM, Mucha JN, Marques dos Santos PA. Assessment of enamel damage after removal of ceramic brackets. Am J Orthod Dentofacial Orthop 2008;134:548-55. https://doi.org/10.1016/j.ajodo.2006.08.022
  31. Habibi M, Nik TH, Hooshmand T. Comparison of debonding characteristics of metal and ceramic orthodontic brackets to enamel: an in-vitro study. Am J Orthod Dentofacial Orthop 2007;132:675-9. https://doi.org/10.1016/j.ajodo.2005.11.040
  32. Bishara SE, Fehr DE, Jakobsen JR. A comparative study of the debonding strengths of different ceramic brackets, enamel conditioners, and adhesives. Am J Orthod Dentofacial Orthop 1993;104:170-9. https://doi.org/10.1016/S0889-5406(05)81007-8
  33. Andreasen GF, Stieg MA. Bonding and debonding brackets to porcelain and gold. Am J Orthod Dentofacial Orthop 1988;93:341-5. https://doi.org/10.1016/0889-5406(88)90164-3
  34. Katona TR, Moore BK. The effects of load misalignment on tensile load testing of direct bonded orthodontic brackets--a finite element model. Am J Orthod Dentofacial Orthop 1994;105:543-51. https://doi.org/10.1016/S0889-5406(94)70138-5
  35. Oilo G. Bond strength testing--what does it mean? Int Dent J 1993;43:492-8.
  36. Bishara SE, VonWald L, Laffoon JF, Warren JJ. The effect of repeated bonding on the shear bond strength of a composite resin orthodontic adhesive. Angle Orthod 2000;70:435-41.
  37. Bishara SE, Laffoon JF, VonWald L, Warren JJ. The effect of repeated bonding on the shear bond strength of different orthodontic adhesives. Am J Orthod Dentofacial Orthop 2002;121:521-5. https://doi.org/10.1067/mod.2002.123042
  38. Ostertag AJ, Dhuru VB, Ferguson DJ, Meyer RA Jr. Shear, torsional, and tensile bond strengths of ceramic brackets using three adhesive filler concentrations. Am J Orthod Dentofacial Orthop 1991;100:251-8. https://doi.org/10.1016/0889-5406(91)70062-2
  39. Smith RM, Barrett MG, Gardner WA, Marshall T, McLean MJ, McMichael DW, et al. Effect of environmental stress and surface treatment on resin-to-metal bonding. Am J Dent 1993;6:111-5.